
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

CHAPTER 24

NOSQL Databases

and Big Data Storage Systems

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Introduction

 NOSQL

 Not only SQL

 Most NOSQL systems are distributed databases

or distributed storage systems

 Focus on semi-structured data storage, high

performance, availability, data replication, and

scalability

Slide 24- 3

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Introduction (cont’d.)

 NOSQL systems focus on storage of “big data”

 Typical applications that use NOSQL

 Social media

 Web links

 User profiles

 Marketing and sales

 Posts and tweets

 Road maps and spatial data

 Email

Slide 24- 4

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

24.1 Introduction to NOSQL Systems

 BigTable

 Google’s proprietary NOSQL system

 Column-based or wide column store

 DynamoDB (Amazon)

 Key-value data store

 Cassandra (Facebook)

 Uses concepts from both key-value store and

column-based systems

Slide 24- 5

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Introduction to NOSQL Systems

(cont’d.)

 MongoDB and CouchDB

 Document stores

 Neo4J and GraphBase

 Graph-based NOSQL systems

 OrientDB

 Combines several concepts

 Database systems classified on the object model

 Or native XML model

Slide 24- 6

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Introduction to NOSQL Systems

(cont’d.)

 NOSQL characteristics related to distributed

databases and distributed systems

 Scalability

 Availability, replication, and eventual consistency

 Replication models

 Master-slave

 Master-master

 Sharding of files

 High performance data access

Slide 24- 7

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Introduction to NOSQL Systems

(cont’d.)

 NOSQL characteristics related to data models

and query languages

 Schema not required

 Less powerful query languages

 Versioning

Slide 24- 8

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Introduction to NOSQL Systems

(cont’d.)

 Categories of NOSQL systems

 Document-based NOSQL systems

 NOSQL key-value stores

 Column-based or wide column NOSQL systems

 Graph-based NOSQL systems

 Hybrid NOSQL systems

 Object databases

 XML databases

 Slide 24- 9

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

24.2 The CAP Theorem

 Various levels of consistency among replicated

data items

 Enforcing serializabilty the strongest form of

consistency

 High overhead – can reduce read/write operation

performance

 CAP theorem

 Consistency, availability, and partition tolerance

 Not possible to guarantee all three simultaneously

 In distributed system with data replication

Slide 24- 10

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

The CAP Theorem (cont’d.)

 Designer can choose two of three to guarantee

 Weaker consistency level is often acceptable in

NOSQL distributed data store

 Guaranteeing availability and partition tolerance

more important

 Eventual consistency often adopted

Slide 24- 11

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

24.3 Document-Based NOSQL

Systems and MongoDB

 Document stores

 Collections of similar documents

 Individual documents resemble complex objects

or XML documents

 Documents are self-describing

 Can have different data elements

 Documents can be specified in various formats

 XML

 JSON

Slide 24- 12

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

MongoDB Data Model

 Documents stored in binary JSON (BSON) format

 Individual documents stored in a collection

 Example command

 First parameter specifies name of the collection

 Collection options include limits on size and

number of documents

 Each document in collection has unique ObjectID

field called _id

Slide 24- 13

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

MongoDB Data Model (cont’d.)

 A collection does not have a schema

 Structure of the data fields in documents chosen

based on how documents will be accessed

 User can choose normalized or denormalized

design

 Document creation using insert operation

 Document deletion using remove operation

Slide 24- 14

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 24- 15

Figure 24.1 (continues)

Example of simple documents in

MongoDB (a) Denormalized

document design with embedded

subdocuments (b) Embedded

array of document references

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 24- 16

Figure 24.1 (cont’d.)

Example of simple

documents in MongoDB

(c) Normalized documents

(d) Inserting the

documents in Figure

24.1(c) into their

collections

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

MongoDB Distributed Systems

Characteristics

 Two-phase commit method

 Used to ensure atomicity and consistency of

multidocument transactions

 Replication in MongoDB

 Concept of replica set to create multiple copies on

different nodes

 Variation of master-slave approach

 Primary copy, secondary copy, and arbiter

 Arbiter participates in elections to select new

primary if needed

Slide 24- 17

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

MongoDB Distributed Systems

Characteristics (cont’d.)

 Replication in MongoDB (cont’d.)

 All write operations applied to the primary copy

and propagated to the secondaries

 User can choose read preference

 Read requests can be processed at any replica

 Sharding in MongoDB

 Horizontal partitioning divides the documents into

disjoint partitions (shards)

 Allows adding more nodes as needed

 Shards stored on different nodes to achieve load

balancing
Slide 24- 18

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

MongoDB Distributed Systems

Characteristics (cont’d.)

 Sharding in MongoDB (cont’d.)

 Partitioning field (shard key) must exist in every

document in the collection

 Must have an index

 Range partitioning

 Creates chunks by specifying a range of key values

 Works best with range queries

 Hash partitioning

 Partitioning based on the hash values of each shard

key

Slide 24- 19

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

24.4 NOSQL Key-Value Stores

 Key-value stores focus on high performance,

availability, and scalability

 Can store structured, unstructured, or semi-

structured data

 Key: unique identifier associated with a data item

 Used for fast retrieval

 Value: the data item itself

 Can be string or array of bytes

 Application interprets the structure

 No query language

Slide 24- 20

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

DynamoDB Overview

 DynamoDB part of Amazon’s Web Services/SDK

platforms

 Proprietary

 Table holds a collection of self-describing items

 Item consists of attribute-value pairs

 Attribute values can be single or multi-valued

 Primary key used to locate items within a table

 Can be single attribute or pair of attributes

Slide 24- 21

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Voldemort Key-Value Distributed

Data Store

 Voldemort: open source key-value system similar

to DynamoDB

 Voldemort features

 Simple basic operations (get, put, and delete)

 High-level formatted data values

 Consistent hashing for distributing (key, value)

pairs

 Consistency and versioning

 Concurrent writes allowed

 Each write associated with a vector clock

Slide 24- 22

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 24- 23

Figure 24.2 Example of consistent

hashing (a) Ring having three nodes

A, B, and C, with C having greater

capacity. The h(K) values that map to

the circle points in range 1 have their

(k, v) items stored in node A, range 2

in node B, range 3 in node C (b)

Adding a node D to the ring. Items in

range 4 are moved to the node D

from node B (range 2 is reduced) and

node C (range 3 is reduced)

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Examples of Other Key-Value Stores

 Oracle key-value store

 Oracle NOSQL Database

 Redis key-value cache and store

 Caches data in main memory to improve

performance

 Offers master-slave replication and high availability

 Offers persistence by backing up cache to disk

 Apache Cassandra

 Offers features from several NOSQL categories

 Used by Facebook and others

Slide 24- 24

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

24.5 Column-Based or Wide Column

NOSQL Systems

 BigTable: Google’s distributed storage system for

big data

 Used in Gmail

 Uses Google File System for data storage and

distribution

 Apache Hbase a similar, open source system

 Uses Hadoop Distributed File System (HDFS) for

data storage

 Can also use Amazon’s Simple Storage System

(S3)

Slide 24- 25

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Hbase Data Model and Versioning

 Data organization concepts

 Namespaces

 Tables

 Column families

 Column qualifiers

 Columns

 Rows

 Data cells

 Data is self-describing

Slide 24- 26

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Hbase Data Model and Versioning

(cont’d.)

 HBase stores multiple versions of data items

 Timestamp associated with each version

 Each row in a table has a unique row key

 Table associated with one or more column

families

 Column qualifiers can be dynamically specified

as new table rows are created and inserted

 Namespace is collection of tables

 Cell holds a basic data item

Slide 24- 27

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 24- 28

Figure 24.3 Examples in Hbase (a) Creating a table called EMPLOYEE with three column

families: Name, Address, and Details (b) Inserting some in the EMPLOYEE table;

different rows can have different self-describing column qualifiers (Fname, Lname,

Nickname, Mname, Minit, Suffix, … for column family Name; Job, Review, Supervisor,

Salary for column family Details). (c) Some CRUD operations of Hbase

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Hbase Crud Operations

 Provides only low-level CRUD (create, read,

update, delete) operations

 Application programs implement more complex

operations

 Create

 Creates a new table and specifies one or more

column families associated with the table

 Put

 Inserts new data or new versions of existing data

items

Slide 24- 29

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Hbase Crud Operations (cont’d.)

 Get

 Retrieves data associated with a single row

 Scan

 Retrieves all the rows

Slide 24- 30

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Hbase Storage and Distributed

System Concepts

 Each Hbase table divided into several regions

 Each region holds a range of the row keys in the

table

 Row keys must be lexicographically ordered

 Each region has several stores

 Column families are assigned to stores

 Regions assigned to region servers for storage

 Master server responsible for monitoring the

region servers

 Hbase uses Apache Zookeeper and HDFS

Slide 24- 31

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

24.6 NOSQL Graph Databases and

Neo4j

 Graph databases

 Data represented as a graph

 Collection of vertices (nodes) and edges

 Possible to store data associated with both

individual nodes and individual edges

 Neo4j

 Open source system

 Uses concepts of nodes and relationships

Slide 24- 32

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Neo4j (cont’d.)

 Nodes can have labels

 Zero, one, or several

 Both nodes and relationships can have properties

 Each relationship has a start node, end node,

and a relationship type

 Properties specified using a map pattern

 Somewhat similar to ER/EER concepts

Slide 24- 33

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Neo4j (cont’d.)

 Creating nodes in Neo4j

 CREATE command

 Part of high-level declarative query language

Cypher

 Node label can be specified when node is created

 Properties are enclosed in curly brackets

Slide 24- 34

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Neo4j (cont’d.)

Slide 24- 35

Figure 24.4 Examples in Neo4j using the Cypher language (a) Creating some nodes

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Neo4j (cont’d.)

Slide 24- 36

Figure 24.4 (cont’d.) Examples in Neo4j using the Cypher language

(b) Creating some relationships

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Neo4j (cont’d.)

 Path

 Traversal of part of the graph

 Typically used as part of a query to specify a

pattern

 Schema optional in Neo4j

 Indexing and node identifiers

 Users can create for the collection of nodes that

have a particular label

 One or more properties can be indexed

Slide 24- 37

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

The Cypher Query Language of

Neo4j

 Cypher query made up of clauses

 Result from one clause can be the input to the

next clause in the query

Slide 24- 38

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

The Cypher Query Language of

Neo4j (cont’d.)

Slide 24- 39

Figure 24.4 (cont’d.) Examples in Neo4j using the Cypher language

(c) Basic syntax of Cypher queries

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

The Cypher Query Language of

Neo4j (cont’d.)

Slide 24- 40

Figure 24.4 (cont’d.) Examples in

Neo4j using the Cypher language

(d) Examples of Cypher queries

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Neo4j Interfaces and Distributed

System Characteristics

 Enterprise edition versus community edition

 Enterprise edition supports caching, clustering of

data, and locking

 Graph visualization interface

 Subset of nodes and edges in a database graph

can be displayed as a graph

 Used to visualize query results

 Master-slave replication

 Caching

 Logical logs

Slide 24- 41

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

24.7 Summary

 NOSQL systems focus on storage of “big data”

 General categories

 Document-based

 Key-value stores

 Column-based

 Graph-based

 Some systems use techniques spanning two or

more categories

 Consistency paradigms

 CAP theorem

Slide 24- 42

