
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

CHAPTER 21

Concurrency Control Techniques

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Introduction

 Concurrency control protocols

 Set of rules to guarantee serializability

 Two-phase locking protocols

 Lock data items to prevent concurrent access

 Timestamp

 Unique identifier for each transaction

 Multiversion currency control protocols

 Use multiple versions of a data item

 Validation or certification of a transaction

Slide 21- 3

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

21.1 Two-Phase Locking Techniques

for Concurrency Control

 Lock

 Variable associated with a data item describing

status for operations that can be applied

 One lock for each item in the database

 Binary locks

 Two states (values)

 Locked (1)

 Item cannot be accessed

 Unlocked (0)

 Item can be accessed when requested

Slide 21- 4

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Two-Phase Locking Techniques

for Concurrency Control (cont’d.)

 Transaction requests access by issuing a

lock_item(X) operation

Slide 21- 5

Figure 21.1 Lock and unlock operations for binary locks

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Two-Phase Locking Techniques

for Concurrency Control (cont’d.)

 Lock table specifies items that have locks

 Lock manager subsystem

 Keeps track of and controls access to locks

 Rules enforced by lock manager module

 At most one transaction can hold the lock on an

item at a given time

 Binary locking too restrictive for database items

Slide 21- 6

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Two-Phase Locking Techniques

for Concurrency Control (cont’d.)

 Shared/exclusive or read/write locks

 Read operations on the same item are not

conflicting

 Must have exclusive lock to write

 Three locking operations

 read_lock(X)

 write_lock(X)

 unlock(X)

Slide 21- 7

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 21-8

Figure 21.2 Locking and

unlocking operations for

two-mode (read/write, or

shared/exclusive) locks

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Two-Phase Locking Techniques

for Concurrency Control (cont’d.)

 Lock conversion

 Transaction that already holds a lock allowed to

convert the lock from one state to another

 Upgrading

 Issue a read_lock operation then a write_lock

operation

 Downgrading

 Issue a read_lock operation after a write_lock

operation

Slide 21- 9

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Guaranteeing Serializability by Two-

Phase Locking

 Two-phase locking protocol

 All locking operations precede the first unlock

operation in the transaction

 Phases

 Expanding (growing) phase

 New locks can be acquired but none can be released

 Lock conversion upgrades must be done during this phase

 Shrinking phase

 Existing locks can be released but none can be acquired

 Downgrades must be done during this phase

Slide 21- 10

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 21- 11

Figure 21.3 Transactions that

do not obey two-phase

locking (a) Two transactions

T1 and T2 (b) Results of

possible serial schedules of

T1 and T2 (c) A

nonserializable schedule S

that uses locks

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Guaranteeing Serializability by Two-

Phase Locking

 If every transaction in a schedule follows the two-

phase locking protocol, schedule guaranteed to

be serializable

 Two-phase locking may limit the amount of

concurrency that can occur in a schedule

 Some serializable schedules will be prohibited by

two-phase locking protocol

Slide 21- 12

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Variations of Two-Phase Locking

 Basic 2PL

 Technique described on previous slides

 Conservative (static) 2PL

 Requires a transaction to lock all the items it

accesses before the transaction begins

 Predeclare read-set and write-set

 Deadlock-free protocol

 Strict 2PL

 Transaction does not release exclusive locks until

after it commits or aborts

Slide 21- 13

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Variations of Two-Phase Locking

(cont’d.)

 Rigorous 2PL

 Transaction does not release any locks until after it

commits or aborts

 Concurrency control subsystem responsible for

generating read_lock and write_lock requests

 Locking generally considered to have high

overhead

Slide 21- 14

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Dealing with Deadlock and Starvation

 Deadlock

 Occurs when each transaction T in a set is waiting

for some item locked by some other transaction T’

 Both transactions stuck in a waiting queue

Slide 21- 15

Figure 21.5 Illustrating the deadlock problem (a) A partial schedule of T1′ and T2′ that is

in a state of deadlock (b) A wait-for graph for the partial schedule in (a)

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Dealing with Deadlock and Starvation

(cont’d.)

 Deadlock prevention protocols

 Every transaction locks all items it needs in

advance

 Ordering all items in the database

 Transaction that needs several items will lock them

in that order

 Both approaches impractical

 Protocols based on a timestamp

 Wait-die

 Wound-wait

Slide 21- 16

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Dealing with Deadlock and Starvation

(cont’d.)

 No waiting algorithm

 If transaction unable to obtain a lock, immediately

aborted and restarted later

 Cautious waiting algorithm

 Deadlock-free

 Deadlock detection

 System checks to see if a state of deadlock exists

 Wait-for graph

Slide 21- 17

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Dealing with Deadlock and Starvation

(cont’d.)

 Victim selection

 Deciding which transaction to abort in case of

deadlock

 Timeouts

 If system waits longer than a predefined time, it

aborts the transaction

 Starvation

 Occurs if a transaction cannot proceed for an

indefinite period of time while other transactions

continue normally

 Solution: first-come-first-served queue
Slide 21- 18

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

21.2 Concurrency Control Based

on Timestamp Ordering

 Timestamp

 Unique identifier assigned by the DBMS to identify

a transaction

 Assigned in the order submitted

 Transaction start time

 Concurrency control techniques based on

timestamps do not use locks

 Deadlocks cannot occur

Slide 21- 19

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Concurrency Control Based

on Timestamp Ordering (cont’d.)

 Generating timestamps

 Counter incremented each time its value is

assigned to a transaction

 Current date/time value of the system clock

 Ensure no two timestamps are generated during the

same tick of the clock

 General approach

 Enforce equivalent serial order on the transactions

based on their timestamps

Slide 21- 20

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Concurrency Control Based

on Timestamp Ordering (cont’d.)

 Timestamp ordering (TO)

 Allows interleaving of transaction operations

 Must ensure timestamp order is followed for each

pair of conflicting operations

 Each database item assigned two timestamp

values

 read_TS(X)

 write_TS(X)

Slide 21- 21

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Concurrency Control Based

on Timestamp Ordering (cont’d.)

 Basic TO algorithm

 If conflicting operations detected, later operation

rejected by aborting transaction that issued it

 Schedules produced guaranteed to be conflict

serializable

 Starvation may occur

 Strict TO algorithm

 Ensures schedules are both strict and conflict

serializable

Slide 21- 22

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Concurrency Control Based

on Timestamp Ordering (cont’d.)

 Thomas’s write rule

 Modification of basic TO algorithm

 Does not enforce conflict serializability

 Rejects fewer write operations by modifying

checks for write_item(X) operation

Slide 21- 23

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

21.3 Multiversion Concurrency

Control Techniques

 Several versions of an item are kept by a system

 Some read operations that would be rejected in

other techniques can be accepted by reading an

older version of the item

 Maintains serializability

 More storage is needed

 Multiversion currency control scheme types

 Based on timestamp ordering

 Based on two-phase locking

 Validation and snapshot isolation techniques

Slide 21- 24

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Multiversion Concurrency

Control Techniques (cont’d.)

 Multiversion technique based on timestamp

ordering

 Two timestamps associated with each version are

kept

 read_TS(Xi)

 write_TS(Xi)

Slide 21- 25

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Multiversion Concurrency

Control Techniques (cont’d.)

 Multiversion two-phase locking using certify locks

 Three locking modes: read, write, and certify

Slide 21- 26

Figure 21.6 Lock compatibility tables (a) Lock compatibility table for read/write

locking scheme (b) Lock compatibility table for read/write/certify locking scheme

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

21.4 Validation (Optimistic) Techniques and

Snapshot Isolation Concurrency Control

 Optimistic techniques

 Also called validation or certification techniques

 No checking is done while the transaction is

executing

 Updates not applied directly to the database until

finished transaction is validated

 All updates applied to local copies of data items

 Validation phase checks whether any of

transaction’s updates violate serializability

 Transaction committed or aborted based on result

Slide 20- 27

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Concurrency Control Based on

Snapshot Isolation

 Transaction sees data items based on committed

values of the items in the database snapshot

 Does not see updates that occur after transaction

starts

 Read operations do not require read locks

 Write operations require write locks

 Temporary version store keeps track of older

versions of updated items

 Variation: serializable snapshot isolation (SSI)

Slide 20- 28

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

21.5 Granularity of Data Items and

Multiple Granularity Locking

 Size of data items known as granularity

 Fine (small)

 Coarse (large)

 Larger the data item size, lower the degree of

concurrency permitted

 Example: entire disk block locked

 Smaller the data item size, more locks required

 Higher overhead

 Best item size depends on transaction type

Slide 20- 29

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Multiple Granularity Level Locking

 Lock can be requested at any level

Slide 21- 30

Figure 21.7 A granularity hierarchy for illustrating multiple granularity level locking

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Multiple Granularity Level Locking

(cont’d.)

 Intention locks are needed

 Transaction indicates along the path from the root

to the desired node, what type of lock (shared or

exclusive) it will require from one of the node’s

descendants

 Intention lock types

 Intention-shared (IS)

 Shared locks will be requested on a descendant

node

 Intention-exclusive (IX)

 Exclusive locks will be requested

Slide 21- 31

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Multiple Granularity Level Locking

(cont’d.)

 Intention lock types (cont’d.)

 Shared-intension-exclusive (SIX)

 Current node is locked in shared mode but one or

more exclusive locks will be requested on a

descendant node

Slide 21- 32

Figure 21.8 Lock compatibility matrix for multiple granularity locking

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Multiple Granularity Level Locking

(cont’d.)

 Multiple granularity locking (MGL) protocol rules

Slide 21- 33

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

21.6 Using Locks for Concurrency

Control in Indexes

 Two-phase locking can be applied to B-tree and

B+ -tree indexes

 Nodes of an index correspond to disk pages

 Holding locks on index pages could cause

transaction blocking

 Other approaches must be used

 Conservative approach

 Lock the root node in exclusive mode and then

access the appropriate child node of the root

Slide 21- 34

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Using Locks for Concurrency

Control in Indexes (cont’d.)

 Optimistic approach

 Request and hold shared locks on nodes leading

to the leaf node, with exclusive lock on the leaf

 B-link tree approach

 Sibling nodes on the same level are linked at

every level

 Allows shared locks when requesting a page

 Requires lock be released before accessing the

child node

Slide 21- 35

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

21.7 Other Concurrency Control

Issues

 Insertion

 When new data item is inserted, it cannot be

accessed until after operation is completed

 Deletion operation on the existing data item

 Write lock must be obtained before deletion

 Phantom problem

 Can occur when a new record being inserted

satisfies a condition that a set of records accessed

by another transaction must satisfy

 Record causing conflict not recognized by

concurrency control protocol
Slide 21- 36

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Other Concurrency Control Issues

(cont’d.)

 Interactive transactions

 User can input a value of a data item to a

transaction T based on some value written to the

screen by transaction T′, which may not have

committed

 Solution approach: postpone output of

transactions to the screen until committed

 Latches

 Locks held for a short duration

 Do not follow usual concurrency control protocol

Slide 21- 37

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

21.8 Summary

 Concurrency control techniques

 Two-phase locking

 Timestamp-based ordering

 Multiversion protocols

 Snapshot isolation

 Data item granularity

 Locking protocols for indexes

 Phantom problem and interactive transaction

issues

Slide 21- 38

