
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

CHAPTER 20

Introduction to Transaction

Processing Concepts and Theory

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Introduction

 Transaction

 Describes local unit of database processing

 Transaction processing systems

 Systems with large databases and hundreds of

concurrent users

 Require high availability and fast response time

Slide 20- 3

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

20.1 Introduction to Transaction

Processing

 Single-user DBMS

 At most one user at a time can use the system

 Example: home computer

 Multiuser DBMS

 Many users can access the system (database)

concurrently

 Example: airline reservations system

Slide 20- 4

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Introduction to Transaction

Processing (cont’d.)

 Multiprogramming

 Allows operating system to execute multiple

processes concurrently

 Executes commands from one process, then

suspends that process and executes commands

from another process, etc.

Slide 20- 5

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Introduction to Transaction

Processing (cont’d.)

 Interleaved processing

 Parallel processing

 Processes C and D in figure below

Slide 20-6

Figure 20.1 Interleaved processing versus parallel

processing of concurrent transactions

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Transactions

 Transaction: an executing program

 Forms logical unit of database processing

 Begin and end transaction statements

 Specify transaction boundaries

 Read-only transaction

 Read-write transaction

Slide 20- 7

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Database Items

 Database represented as collection of named

data items

 Size of a data item called its granularity

 Data item

 Record

 Disk block

 Attribute value of a record

 Transaction processing concepts independent of

item granularity

Slide 20- 8

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Read and Write Operations

 read_item(X)

 Reads a database item named X into a program

variable named X

 Process includes finding the address of the disk

block, and copying to and from a memory buffer

 write_item(X)

 Writes the value of program variable X into the

database item named X

 Process includes finding the address of the disk

block, copying to and from a memory buffer, and

storing the updated disk block back to disk

Slide 20- 9

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Read and Write Operations (cont’d.)

 Read set of a transaction

 Set of all items read

 Write set of a transaction

 Set of all items written

Slide 20- 10

Figure 20.2 Two sample transactions (a) Transaction T1 (b) Transaction T2

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

DBMS Buffers

 DBMS will maintain several main memory data

buffers in the database cache

 When buffers are occupied, a buffer replacement

policy is used to choose which buffer will be

replaced

 Example policy: least recently used

Slide 20- 11

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Concurrency Control

 Transactions submitted by various users may

execute concurrently

 Access and update the same database items

 Some form of concurrency control is needed

 The lost update problem

 Occurs when two transactions that access the

same database items have operations interleaved

 Results in incorrect value of some database items

Slide 20- 12

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

The Lost Update Problem

Slide 20-13

Figure 20.3 Some problems that occur when concurrent

execution is uncontrolled (a) The lost update problem

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

The Temporary Update Problem

Slide 20-14

Figure 20.3 (cont’d.) Some problems that occur when concurrent execution

is uncontrolled (b) The temporary update problem

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

The Incorrect Summary Problem

Slide 20-15

Figure 20.3 (cont’d.) Some problems that occur when concurrent execution

is uncontrolled (c) The incorrect summary problem

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

The Unrepeatable Read Problem

 Transaction T reads the same item twice

 Value is changed by another transaction T′
between the two reads

 T receives different values for the two reads of

the same item

Slide 20- 16

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Why Recovery is Needed

 Committed transaction

 Effect recorded permanently in the database

 Aborted transaction

 Does not affect the database

 Types of transaction failures

 Computer failure (system crash)

 Transaction or system error

 Local errors or exception conditions detected by

the transaction

Slide 20- 17

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Why Recovery is Needed (cont’d.)

 Types of transaction failures (cont’d.)

 Concurrency control enforcement

 Disk failure

 Physical problems or catastrophes

 System must keep sufficient information to

recover quickly from the failure

 Disk failure or other catastrophes have long

recovery times

Slide 20- 18

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

20.2 Transaction and System

Concepts

 System must keep track of when each transaction

starts, terminates, commits, and/or aborts

 BEGIN_TRANSACTION

 READ or WRITE

 END_TRANSACTION

 COMMIT_TRANSACTION

 ROLLBACK (or ABORT)

Slide 20- 19

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Transaction and System Concepts

(cont’d.)

Slide 20-20

Figure 20.4 State transition diagram illustrating

the states for transaction execution

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

The System Log

 System log keeps track of transaction operations

 Sequential, append-only file

 Not affected by failure (except disk or

catastrophic failure)

 Log buffer

 Main memory buffer

 When full, appended to end of log file on disk

 Log file is backed up periodically

 Undo and redo operations based on log possible

Slide 20- 21

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Commit Point of a Transaction

 Occurs when all operations that access the

database have completed successfully

 And effect of operations recorded in the log

 Transaction writes a commit record into the log

 If system failure occurs, can search for

transactions with recorded start_transaction but no

commit record

 Force-writing the log buffer to disk

 Writing log buffer to disk before transaction

reaches commit point

Slide 20- 22

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

DBMS-Specific Buffer Replacement

Policies

 Page replacement policy

 Selects particular buffers to be replaced when all

are full

 Domain separation (DS) method

 Each domain handles one type of disk pages

 Index pages

 Data file pages

 Log file pages

 Number of available buffers for each domain is

predetermined

Slide 20- 23

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

DBMS-Specific Buffer Replacement

Policies (cont’d.)

 Hot set method

 Useful in queries that scan a set of pages

repeatedly

 Does not replace the set in the buffers until

processing is completed

 The DBMIN method

 Predetermines the pattern of page references for

each algorithm for a particular type of database

operation

 Calculates locality set using query locality set model

(QLSM)

Slide 20- 24

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

20.3 Desirable Properties of

Transactions

 ACID properties

 Atomicity

 Transaction performed in its entirety or not at all

 Consistency preservation

 Takes database from one consistent state to

another

 Isolation

 Not interfered with by other transactions

 Durability or permanency

 Changes must persist in the database

Slide 20- 25

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Desirable Properties of Transactions

(cont’d.)

 Levels of isolation

 Level 0 isolation does not overwrite the dirty reads

of higher-level transactions

 Level 1 isolation has no lost updates

 Level 2 isolation has no lost updates and no dirty

reads

 Level 3 (true) isolation has repeatable reads

 In addition to level 2 properties

 Snapshot isolation

Slide 20- 26

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

20.4 Characterizing Schedules

Based on Recoverability

 Schedule or history

 Order of execution of operations from all

transactions

 Operations from different transactions can be

interleaved in the schedule

 Total ordering of operations in a schedule

 For any two operations in the schedule, one must

occur before the other

Slide 20- 27

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Characterizing Schedules Based on

Recoverability (cont’d.)

 Two conflicting operations in a schedule

 Operations belong to different transactions

 Operations access the same item X

 At least one of the operations is a write_item(X)

 Two operations conflict if changing their order

results in a different outcome

 Read-write conflict

 Write-write conflict

Slide 20- 28

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Characterizing Schedules Based on

Recoverability (cont’d.)

 Recoverable schedules

 Recovery is possible

 Nonrecoverable schedules should not be

permitted by the DBMS

 No committed transaction ever needs to be rolled

back

 Cascading rollback may occur in some

recoverable schedules

 Uncommitted transaction may need to be rolled

back

Slide 20- 29

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Characterizing Schedules Based on

Recoverability (cont’d.)

 Cascadeless schedule

 Avoids cascading rollback

 Strict schedule

 Transactions can neither read nor write an item X

until the last transaction that wrote X has

committed or aborted

 Simpler recovery process

 Restore the before image

Slide 20- 30

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

20.5 Characterizing Schedules

Based on Serializability

 Serializable schedules

 Always considered to be correct when concurrent

transactions are executing

 Places simultaneous transactions in series

 Transaction T1 before T2, or vice versa

Slide 20- 31

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 20-32

Figure 20.5 Examples of serial and nonserial schedules involving transactions T1

and T2 (a) Serial schedule A: T1 followed by T2 (b) Serial schedule B: T2 followed

by T1 (c) Two nonserial schedules C and D with interleaving of operations

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Characterizing Schedules Based on

Serializability (cont’d.)

 Problem with serial schedules

 Limit concurrency by prohibiting interleaving of

operations

 Unacceptable in practice

 Solution: determine which schedules are

equivalent to a serial schedule and allow those to

occur

 Serializable schedule of n transactions

 Equivalent to some serial schedule of same n

transactions

Slide 20- 33

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Characterizing Schedules Based on

Serializability (cont’d.)

 Result equivalent schedules

 Produce the same final state of the database

 May be accidental

 Cannot be used alone to define equivalence of

schedules

Slide 20- 34

Figure 20.6 Two schedules that are result equivalent for the initial value

of X = 100 but are not result equivalent in general

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Characterizing Schedules Based on

Serializability (cont’d.)

 Conflict equivalence

 Relative order of any two conflicting operations is

the same in both schedules

 Serializable schedules

 Schedule S is serializable if it is conflict equivalent

to some serial schedule S’.

Slide 20- 35

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Characterizing Schedules Based on

Serializability (cont’d.)

 Testing for serializability of a schedule

Slide 20- 36

Algorithm 20.1 Testing conflict serializability of a schedule S

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Characterizing Schedules Based on

Serializability (cont’d.)

Slide 20-37

Figure 20.7 Constructing the precedence graphs for schedules A to D from Figure 20.5 to

test for conflict serializability (a) Precedence graph for serial schedule A (b) Precedence

graph for serial schedule B (c) Precedence graph for schedule C (not serializable) (d)

Precedence graph for schedule D (serializable, equivalent to schedule A)

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

How Serializability is Used for

Concurrency Control

 Being serializable is different from being serial

 Serializable schedule gives benefit of concurrent

execution

 Without giving up any correctness

 Difficult to test for serializability in practice

 Factors such as system load, time of transaction

submission, and process priority affect ordering of

operations

 DBMS enforces protocols

 Set of rules to ensure serializability

Slide 20- 38

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

View Equivalence and View

Serializability

 View equivalence of two schedules

 As long as each read operation of a transaction

reads the result of the same write operation in both

schedules, the write operations of each transaction

must produce the same results

 Read operations said to see the same view in both

schedules

 View serializable schedule

 View equivalent to a serial schedule

Slide 20- 39

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

View Equivalence and View

Serializability (cont’d.)

 Conflict serializability similar to view serializability

if constrained write assumption (no blind writes)

applies

 Unconstrained write assumption

 Value written by an operation can be independent

of its old value

 Debit-credit transactions

 Less-stringent conditions than conflict

serializability or view serializability

Slide 20- 40

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

20.6 Transaction Support in SQL

 No explicit Begin_Transaction statement

 Every transaction must have an explicit end

statement

 COMMIT

 ROLLBACK

 Access mode is READ ONLY or READ WRITE

 Diagnostic area size option

 Integer value indicating number of conditions held

simultaneously in the diagnostic area

Slide 20- 41

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Transaction Support in SQL (cont’d.)

 Isolation level option

 Dirty read

 Nonrepeatable read

 Phantoms

Slide 20- 42

Table 20.1 Possible violations based on isolation levels as defined in SQL

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Transaction Support in SQL (cont’d.)

 Snapshot isolation

 Used in some commercial DBMSs

 Transaction sees data items that it reads based on

the committed values of the items in the database

snapshot when transaction starts

 Ensures phantom record problem will not occur

Slide 20- 43

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

20.7 Summary

 Single and multiuser database transactions

 Uncontrolled execution of concurrent transactions

 System log

 Failure recovery

 Committed transaction

 Schedule (history) defines execution sequence

 Schedule recoverability

 Schedule equivalence

 Serializability of schedules

Slide 20- 44

