747 Edltlon

: /ELAMSRl o NAVATHE

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

CHAPTER 20

Introduction to Transaction
Processing Concepts and Theory

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Introduction

= Transaction
= Describes local unit of database processing
= [ransaction processing systems

s Systems with large databases and hundreds of
concurrent users

= Require high avallability and fast response time

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 20- 3

20.1 Introduction to Transaction
Processing

= Single-user DBMS
= At most one user at a time can use the system
= Example: home computer

s Multiuser DBMS

= Many users can access the system (database)
concurrently

= Example: airline reservations system

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 20- 4

Introduction to Transaction
Processing (cont'd.)

= Multiprogramming

= Allows operating system to execute multiple
processes concurrently

s Executes commands from one process, then
suspends that process and executes commands
from another process, etc.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 20- 5

Introduction to Transaction
Processing (cont'd.)

= Interleaved processing

= Parallel processing
s Processes C and D in figure below

B . B | !
| 1 : C , CGPU,
i I i I D ! CPU,
| 1
} f } Time

t, ty t; ty

Figure 20.1 Interleaved processing versus parallel
processing of concurrent transactions

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 20-6

Transactions

= Transaction: an executing program
» Forms logical unit of database processing
= Begin and end transaction statements
= Specify transaction boundaries
= Read-only transaction
= Read-write transaction

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 20- 7

Database Iltems

s Database represented as collection of named
data items

= Size of a data item called its granularity
= Data item
= Record

= Disk block
= Attribute value of a record

= [ransaction processing concepts independent of
item granularity

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 20- 8

Read and Write Operations

s read_item(X)
» Reads a database item named X into a program
variable named X

= Process includes finding the address of the disk
block, and copying to and from a memory buffer

s Write_item(X)
= Writes the value of program variable X into the
database item named X

= Process includes finding the address of the disk
block, copying to and from a memory buffer, and
storing the updated disk block back to disk

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 20- 9

Read and Write Operations (cont'd.)

s Read set of a transaction
= Set of all items read

s Write set of a transaction
= Set of all items written

(a) T1 (b) Tg
read_item(X); read_item(X);
X=X-N, X=X+ M,
write_item(X); write_item(X);
read_rtem(Y);

Y=Y+ N,
write_item(Y');

Figure 20.2 Two sample transactions (a) Transaction T1 (b) Transaction T2

Slide 20- 10

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

DBMS Buffers

= DBMS will maintain several main memory data
buffers in the database cache

= When buffers are occupied, a buffer replacement
policy is used to choose which buffer will be

replaced
= Example policy: least recently used

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sl [de 20- 11

Concurrency Control

= Transactions submitted by various users may
execute concurrently

= Access and update the same database items
= Some form of concurrency control is needed
= The lost update problem

= Occurs when two transactions that access the
same database items have operations interleaved

s Results in incorrect value of some database items

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sl [de 20- 12

The Lost Update Problem

(a) T, T,
read_item(X);
X=X-N:
read_item(X);
X=X+ M

Time write_item(X);

read_item(Y); ltem X has an incorrect value because

write_item (X); its update by T, is lost (overwritten).

Y=Y+N,
T write_item(Y);

Figure 20.3 Some problems that occur when concurrent
execution is uncontrolled (a) The lost update problem

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 20-13

The Temporary Update Problem

(b) T, T,

read_item(X);
X=X-N,
write_item(X);

Time read_item(X);
X=X+ M
write_item(X); . .
Transaction T, fails and must change
read_item(Y); the value of X back to its old value;
- .
v meanwhile T, has read the temporary

incorrect value of X.

Figure 20.3 (cont’d.) Some problems that occur when concurrent execution
is uncontrolled (b) The temporary update problem

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sl [de 20-14

The Incorrect Summary Problem

(c) T, T,

sum = 0;
read_item(A);
sum =sum + A;

read_item(X);
X=X-N,
write_item(X);
read_iem():’}jr % T reads X after NV is subtracted and reads
sum = SUmM T4 | «—— Y before N is added; a wrong summary
read_item(Y); :
_ _ Is the result (off by N).
sum =sum+Y;
read_item(Y);
Y=Y+ N,
write_item(Y);

Figure 20.3 (cont’d.) Some problems that occur when concurrent execution
is uncontrolled (c) The incorrect summary problem

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 20-15

The Unrepeatable Read Problem

s [ransaction T reads the same item twice

= Value is changed by another transaction T’
between the two reads

s | recelves different values for the two reads of
the same item

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 20- 16

Why Recovery Is Needed

= Committed transaction

» Effect recorded permanently in the database
= Aborted transaction

= Does not affect the database
= Types of transaction failures

= Computer failure (system crash)

= Transaction or system error

= Local errors or exception conditions detected by
the transaction

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sl [de 20- 17

Why Recovery is Needed (cont'd.)

s [ypes of transaction failures (cont’'d.)
= Concurrency control enforcement
= Disk failure
= Physical problems or catastrophes

s System must keep sufficient information to
recover quickly from the failure

= Disk failure or other catastrophes have long
recovery times

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Slide 20- 18

20.2 Transaction and System
Concepts

s System must keep track of when each transaction
starts, terminates, commits, and/or aborts

= BEGIN_ TRANSACTION

= READ or WRITE

= END TRANSACTION

= COMMIT _TRANSACTION
= ROLLBACK (or ABORT)

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 20- 19

Transaction and System Concepts
(cont'd.)

Read, Write
Begin H End

transaction transaction CDI‘ﬂrTIIt]
» C_Partially committed Committed

Abort Abort

~(Faied > Cominated >

Figure 20.4 State transition diagram illustrating
the states for transaction execution

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 20-20

The System Log

s System log keeps track of transaction operations
s Sequential, append-only file

= Not affected by failure (except disk or
catastrophic failure)

= Log buffer

= Main memory buffer

= When full, appended to end of log file on disk
= Log file is backed up periodically

= Undo and redo operations based on log possible

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sl [de 20- 21

Commit Point of a Transaction

= Occurs when all operations that access the
database have completed successfully

= And effect of operations recorded in the log
= Transaction writes a commit record into the log

» If system failure occurs, can search for
transactions with recorded start_transaction but no
commit record

s Force-writing the log buffer to disk

= Writing log buffer to disk before transaction
reaches commit point

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sl [de 20- 22

DBMS-Specific Buffer Replacement
Policies

= Page replacement policy
s Selects particular buffers to be replaced when all
are full
= Domain separation (DS) method
= Each domain handles one type of disk pages
= INndex pages
« Data file pages
« Log file pages
= Number of available buffers for each domain is
predetermined

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 20- 23

DBMS-Specific Buffer Replacement
Policies (cont'd.)

s Hot set method

= Useful in queries that scan a set of pages
repeatedly

= Does not replace the set in the buffers until
processing is completed

x The DBMIN method

= Predetermines the pattern of page references for
each algorithm for a particular type of database
operation

« Calculates locality set using query locality set model
(QLSM)

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sl [de 20- 24

20.3 Desirable Properties of
Transactions

= ACID properties
= Atomicity
« Transaction performed in its entirety or not at all

= Consistency preservation

= akes database from one consistent state to
another

= ISolation

« Not interfered with by other transactions
= Durability or permanency

« Changes must persist in the database

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 20- 25

Desirable Properties of Transactions
(cont'd.)

m Levels of isolation

= Level O isolation does not overwrite the dirty reads
of higher-level transactions

= Level 1 isolation has no lost updates

= Level 2 isolation has no lost updates and no dirty
reads

= Level 3 (true) isolation has repeatable reads
« In addition to level 2 properties

= Snapshot isolation

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 20- 26

20.4 Characterizing Schedules
Based on Recoverability

= Schedule or history

= Order of execution of operations from all
transactions

= Operations from different transactions can be
Interleaved In the schedule

= Total ordering of operations in a schedule

= For any two operations in the schedule, one must
occur before the other

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sl [de 20- 27

Characterizing Schedules Based on
Recoverability (cont'd.)

= Two conflicting operations in a schedule

= Operations belong to different transactions
= Operations access the same item X

= At least one of the operations is a write_item(X)

= Two operations conflict if changing their order
results in a different outcome

s Read-write conflict
s Write-write conflict

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Slide 20- 28

Characterizing Schedules Based on
Recoverability (cont'd.)

s Recoverable schedules
= Recovery is possible

s Nonrecoverable schedules should not be
permitted by the DBMS

x No committed transaction ever needs to be rolled
back

s Cascading rollback may occur in some
recoverable schedules

= Uncommitted transaction may need to be rolled
back

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 20- 29

Characterizing Schedules Based on
Recoverability (cont'd.)

s Cascadeless schedule
= Avoids cascading rollback
s Strict schedule

= [ransactions can neither read nor write an item X
until the last transaction that wrote X has
committed or aborted

= Simpler recovery process
» Restore the before image

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 20- 30

20.5 Characterizing Schedules
Based on Serializability

s Serializable schedules

= Always considered to be correct when concurrent
transactions are executing

s Places simultaneous transactions in series
» Transaction T, before T,, or vice versa

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 20- 31

@ T, T, ® T, T,
read tem(X); read_item(X);
X=X-N: X=X+ M
write_tem(X); write_item(X):
i read_item(Y); : read_item(X);
Time Time - '
Y=Y+ N X=X-N
write_item(¥'); write_item(X);
read_item(X): read_item(¥);
X=X+ M Y=Y+N;
write_item(X): write_tem(Y);
Schedule A Schedule B
(c) 7 T, 7 T,
read_tem(X) read_item(X);
X=X-N, read_item(X): ir:e}i t;rxiﬂ_
X=X+M, - '
Time write_item(X); Time read item(X);
read_item(Y): X=X+ M
o write_item({X);
¥=¥Y+N: write_item(X}; read_item(Y);

wrte_tem(Y);

Y=¥+N,

write_item(Y);

Schedule C Schedule D

Figure 20.5 Examples of serial and nonserial schedules involving transactions T1
and T2 (a) Serial schedule A: T1 followed by T2 (b) Serial schedule B: T2 followed
by T1 (c) Two nonserial schedules C and D with interleaving of operations

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Slide 20-32

Characterizing Schedules Based on
Serializability (cont'd.)

s Problem with serial schedules

= Limit concurrency by prohibiting interleaving of
operations

= Unacceptable in practice

= Solution: determine which schedules are
equivalent to a serial schedule and allow those to
occur

s Serializable schedule of n transactions

» Equivalent to some serial schedule of same n
transactions

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 20- 33

Characterizing Schedules Based on
Serializability (cont'd.)

= Result equivalent schedules

= Produce the same final state of the database
« May be accidental

= Cannot be used alone to define equivalence of

schedules
S-I Sﬂ
read_item(X): read_item(X);
X=X+10; X=X+11;
write_item(X): write_item (X);

Figure 20.6 Two schedules that are result equivalent for the initial value
of X = 100 but are not result equivalent in general

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 20- 34

Characterizing Schedules Based on
Serializability (cont'd.)

= Conflict equivalence

= Relative order of any two conflicting operations is
the same in both schedules

s Serializable schedules

= Schedule S is serializable if it is conflict equivalent
to some serial schedule S'.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 20- 35

Characterizing Schedules Based on
Serializability (cont'd.)

m Testing for serializabllity of a schedule

1. For each transaction T; participating in schedule §, create a node labeled
T; in the precedence graph.

2. For each case in S where T; executes a read_item(X) after T; executes a
write_item(X), create an edge (T; — TJ,-} in the precedence graph.

3. For each case in S where T executes a write_item(X) after T; executes a
read_item(X), create an edge (T; — T)) in the precedence graph.

4. For each case in S where T; executes a write_item(X) after T; executes a
write_item(X), create an edge (T; — Tj) in the precedence graph.

5. The schedule § is serializable if and only if the precedence graph has no
cycles.

Algorithm 20.1 Testing conflict serializability of a schedule S

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 20- 36

Characterizing Schedules Based on
Serializability (cont'd.)

X
0@ ® e
X
X
@ D e® G
X X

Figure 20.7 Constructing the precedence graphs for schedules A to D from Figure 20.5 to
test for conflict serializability (a) Precedence graph for serial schedule A (b) Precedence
graph for serial schedule B (c) Precedence graph for schedule C (not serializable) (d)
Precedence graph for schedule D (serializable, equivalent to schedule A)

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 20-37

How Serializability is Used for
Concurrency Control

s Being serializable is different from being serial

= Serializable schedule gives benefit of concurrent
execution
= Without giving up any correctness

= Difficult to test for serializabllity in practice

= Factors such as system load, time of transaction
submission, and process priority affect ordering of
operations

= DBMS enforces protocols
s Set of rules to ensure serializability

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 20- 38

View Equivalence and View
Serializability

= View equivalence of two schedules

= As long as each read operation of a transaction
reads the result of the same write operation in both
schedules, the write operations of each transaction
must produce the same results

= Read operations said to see the same view In both
schedules

= View serializable schedule
= View equivalent to a serial schedule

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 20- 39

View Equivalence and View
Serializability (cont'd.)

m Conflict serializability similar to view serializability
If constrained write assumption (no blind writes)
applies

= Unconstrained write assumption

= Value written by an operation can be independent
of its old value

s Debit-credit transactions

s Less-stringent conditions than conflict
serializabllity or view serializability

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 20- 40

20.6 Transaction Support in SQL

= No explicit Begin_Transaction statement

s Every transaction must have an explicit end
statement
= COMMIT

= ROLLBACK
s Access mode iIs READ ONLY or READ WRITE

= Diagnostic area size option

= Integer value indicating number of conditions held
simultaneously in the diagnostic area

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sl [de 20-41

Transaction Support in SQL (cont'd.)

= Isolation level option

= Dirty read

= Nonrepeatable read

= Phantoms

Type of Violation

Isolation Level Dirty Read Nonrepeatable Read Phantom
READ UNCOMMITTED Yes Yes Yes
READ COMMITTED No Yes Yes
REPEATABLE READ No No Yes
SERIALIZABLE No No No

Table 20.1 Possible violations based on isolation levels as defined in SQL

Slide 20- 42

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Transaction Support in SQL (cont'd.)

= Snapshot isolation
= Used in some commercial DBMSs

= [ransaction sees data items that it reads based on
the committed values of the items In the database
snapshot when transaction starts

= Ensures phantom record problem will not occur

Slide 20- 43

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

20.7 Summary

= Single and multiuser database transactions

= Uncontrolled execution of concurrent transactions
s System log

= Failure recovery

s Committed transaction

s Schedule (history) defines execution sequence
= Schedule recoverabillity
= Schedule equivalence

s Serializability of schedules

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 20- 44

