
Homework 3

Informed search

CompSci 171: Intro AI

4.1 A* search: From Lugoj to Bucharest

 f(n) = g(n) + h(n)
A* search is guided by evaluation function f(n)

100

A* search: From Lugoj to Bucharest

Lugoj

Timisoara
Mehadia

f = 111 + 329 = 440 f = 70 + 241 = 311

A* search: From Lugoj to Bucharest

Lugoj

Timisoara
Mehadia

f = 111 + 329 = 440 f = 70 + 241 = 311

Dobreta

f = (70 + 75) + 242 = 387

A* search: From Lugoj to Bucharest

Lugoj

Timisoara
Mehadia

f = 111 + 329 = 440 f = 70 + 241 = 311

Dobreta

f = (70 + 75) + 242 = 387

Craiova

f = (145 + 120) + 160 = 425

A* search: From Lugoj to Bucharest

Lugoj

Timisoara
Mehadia

f = 111 + 329 = 440 f = 70 + 241 = 311

Dobreta

f = (70 + 75) + 242 = 387

Craiova

f = (145 + 120) + 160 = 425

Rimnicu
Pitesti

f = 503f = 604

A* search: From Lugoj to Bucharest

Lugoj

Timisoara
Mehadia

f = 111 + 329 = 440 f = 70 + 241 = 311

Dobreta

f = (70 + 75) + 242 = 387

Craiova

f = (145 + 120) + 160 = 425

Rimnicu
Pitesti

f = 503f = 604

Arad

f = (111 + 118) + 366 = 595

A* search: From Lugoj to Bucharest

Lugoj

Timisoara
Mehadia

f = 111 + 329 = 440 f = 70 + 241 = 311

Dobreta

f = (70 + 75) + 242 = 387

Craiova

f = (145 + 120) + 160 = 425

Rimnicu
Pitesti

f = 503f = 604

Dobreta

f = (111 + 118) + 366 = 595

Rimnicu
Bucharest

f = 504f = 693

f = 70+75+120+138+101 = 504

4.2 Heuristic path algorithm

f(n) = (2 – w)g(n) + wh(n)
For what value of w is this algorithm guaranteed to be

optimal?

 g(n): a path cost to n from a start state

 h(n): a heuristic estimate of cost from n to a goal state

4.2 Heuristic path algorithm

If h(n) is admissible, the algorithm is guaranteed to be optimal

which behaves exactly like A* search with a heuristic

To be optimal, we require

f n =2−w [g n
w
2−w

hn]

f n =g n 
w
2−w

hn

w
2−w

1

w1

4.2 Heuristic path algorithm

For w = 0: f(n) = 2g(n) -> Uniform-cost search

For w = 1: f(n) = g(n) + h(n) -> A* search

For w = 2: f(n) = 2h(n) -> Greedy best search

4.3

(a) Breadth-first search is a special case of
uniform-cost search

When all step costs are equal (and let’s assume
equal to 1), g(n) is just a multiple of depth n. Thus,
breadth-first search and uniform-cost search would
behave the same in this case

f(n) = g(n) = 1*(depth of n)

4.3

(b) BFS, DFS and uniform-cost search are special
cases of best-first search

–

BFS: f(n) = depth(n)

–

DFS: f(n) = -depth(n)

–

UCS: f(n) = g(n)

4.3

(c) Uniform-cost search is special case of A*
search

A* search: f(n) = g(n) + h(n)
Uniform-cost search: f(n) = g(n)

Thus, for h(n) = 0, uniform cost search will produce the
same result as A* search

4. Prove that the Manhattan Distance
 heuristic for 8-puzzle is admissible

Manhattan Distance for points
P

1
(x

1
,y

1
), P

2
(x

2
,y

2
) is defined by:

d  p1 , p2 =∣x1− x2∣∣y1− y2∣

Heuristic:

•Tiles cannot move along diagonals, so each tile has to move at least d(n)
steps to its goal

•Any move can only move one tile at a time

h=∑
n=1

8

d n

5. Eight Queens problem

h – number of pairs of queens that are attacking each other

5. Eight Queens problem

h = 2

However, number of conflicts for Queen at “b3” are:

1
2
2
3
0
2
2
2

5. Eight Queens problem

Therefore, the true cost to reach the goal state h* is 1

Thus, h>h* heuristic is not admissible

5. Eight Queens problem

We can propose another heuristic.
For example, we can propose heuristic derived form a relaxed (and trivial)
version of 8-Queens problem, that the eight queens must be placed in the
board so that no two queens are on the same row.

Thus, h = Σ(# queens that are on the same row – 1) for all conflicting rows

4.11

(a) Local beam search with k=1

– We would randomly generate 1 start state

– At each step we would generate all the
successors, and retain the 1 best state

– Equivalent to HILL-CLIMBING

4.11

(b) Local beam search with k=∞

– 1 initial state and no limit of the number of states
retained

– We start at initial state and generate all successor
states (no limit how many)

– If one of those is a goal, we stop
– Otherwise, we generate all successors of those states

(2 steps from the initial state), and continue

– Equivalent to BREADTH-FIRST SEARCH

4.11

(c) Simulated annealing with T = 0 at all times

– If T is very small, the probability of accepting an
arbitrary neighbor with lower value is
approximately 0

– This means that we choose a successor state
randomly and move to that state if it is better
than the current state

– Equivalent to FIRST-CHOICE HILL CLIMBING

4.11

(d) Genetic algorithm with population size N = 1

– If selection step necessarily chooses the single
population member twice, so the crossover steo
does nothing.

– Moreover, if we think of the mutation step as
selecting a successor at random, there is no
guarantee that the successor is an improvement over
the parent

– Equivalent to RANDOM WALK

4-Queens problem

Min-conflict algorithm:

1. Randomly choose a variable from set of
problematic variables

2. Reassign its value to the one that results in the
fewest conflicts overall

3. Continue until there are no conflicts

Q1

Q2

Q3

Q4

4-Queens problem

3 1 2 1

1 3 1 2

2 1 3 1

1 2 1 3

A B C D

4

3

2

1

Q1

Q2

Q3

Q4

Number of conflicts

All queens are
attacked.

Pick Q2 randomly

We can move Q2 to
B2 or B4

Randomly, move
Q2 to B4

4-Queens problem

3 1 2 2

1 3 1 1

1 1 2 2

1 2 1 2

A B C D

4

3

2

1

Q1 Q2

Q3

Q4

All queens are
attacked.

Pick Q1 randomly

We can move Q1 to
A1 ~ A3

Randomly, move
Q1 to A2

4-Queens problem

3 0 2 1

1 3 1 1

1 2 2 3

1 3 1 1

A B C D

4

3

2

1

Q1

Q2

Q3

Q4

Q1, Q3 and Q4 are
attacked.

Pick Q3 randomly

We can move Q3 to
C1 or C3

Randomly, we
select C1

4-Queens problem

2 0 2 1

2 2 1 0

0 2 2 3

2 3 1 1

A B C D

4

3

2

1

Q1

Q2

Q3 Q4

Q3 and Q4 are
attacked.

Pick Q4 randomly

We can move Q4
D3

4-Queens problem

2 0 2 1

2 2 1 0

0 2 2 3

2 3 1 1

A B C D

4

3

2

1

Q1

Q2

Q3

Q4

No conflicts!

8. Compute the following gradients

)2)(1(2)2(2)1(2),(

)2(),,(

)2()exp()1(),,(

))(exp(1

1
),(

)1()2)(1(),,,(

22

2

332

3














yxyxyxg

yzxzyxc

zyxxzyxh

cbyax
yxg

xyztzyxtzyxf

b

a, b, c are some arbitrary constants

8. Compute the following gradients

)2)(1(2)2(2)1(2),(

)2(),,(

)2()exp()1(),,(

))(exp(1

1
),(

)1()2)(1(),,,(

22

2

332

3














yxyxyxg

yzxzyxc

zyxxzyxh

cbyax
yxg

xyztzyxtzyxf

b

8. Compute the following gradients
f x , y , z , t = x−1 2− y  zt 3−1 xyz

∇ f =2− y zt3−1 yz ,− x−1 zt 3−1 xz , x−12− y  t3−1 xy , 3 t2 xyz 

g x , y =
1

1exp −axbyc 

∇ g=
a exp −axbyc 

1exp −axbyc 2
,

b exp −axby c

1exp −axbyc 2


h x , y , z =x−1 2exp  x  y−23 z 3

∇ h=x 2−1exp  x  , 3  y−22 z 3, 3 y−23 z2 

c  x , y , z =x− z−2y−2 b

∇ c=b x− z−2y−2b−1 , 4b x− z−2y−2b−1 y−3 ,−b x− z−2y−2b−1

g x , y =2 x−122  y−22−2 x−1 y−2
∇ g=4x−2y , −2x4y−6

Pseudo code for gradient descent
algorithm that minimize g(x, y)

Uniform Cost Search

A

FC

B

E

I

H

G

D

1

4 3

3

2

5

2

4

1

Goal: path AI

Queue: A (root)

Uniform Cost Search

A

FC

B

E

I

H

G

D

1

4 3

3

2

5

2

4

1

Step 1:
At node A:
Queue: D=2, G=3, C=4, B=5
Note: nodes in the queue are sorted by distance from the root

Uniform Cost Search

A

FC

B

E

I

H

G

D

1

4 3

3

2

5

2

4

1

Step 2:
At node D:
Queue: G=3, C=4, E=4, B=5, H=5
Note: nodes in the queue are sorted by distance from the root

Uniform Cost Search

A

FC

B

E

I

H

G

D

1

4 3

3

2

5

2

4

1

Step 3:
At node G:
Queue: I=4, C=4, E=4, B=5, H=5
Note: nodes in the queue are sorted by distance from the root

Uniform Cost Search

A

FC

B

E

I

H

G

D

1

4 3

3

2

5

2

4

1

Step 4:
At node I:

GOAL NODE FOUND!!!!!

A* Search

Heuristic Estimates:

h(B -> G2) = 9

h(D -> G2) = 10

h(A -> G1) = 2

h(C -> G1) = 1

R

A B

C
D

G1 G2

9

1

1

1

2

10

f(n) = g(n) + h(n)

Where:
f(n) – estimated total cost of path

through n to goal
g(n) – cost so far to reach n
h(n) – estimated cost from n to goal

A* Search f(n) = g(n) + h(n)

h(B -> G2) = 9
h(D -> G2) = 10
h(A -> G1) = 2
h(C -> G1) = 1

R

A B

C
D

G1 G2

f(A) = g(A) + h(A->G1)
f = 9 + 2 = 11 f = 1 + 9 = 10 f (A) = 11 > f(B) = 10

A* Search f(n) = g(n) + h(n)

h(B -> G2) = 9
h(D -> G2) = 10
h(A -> G1) = 2
h(C -> G1) = 1

R

A B

C
D

G1 G2

f(A) = g(A) + h(A->G1)
f = 9 + 2 = 11 f = 1 + 9 = 10

f = (1 + 2) + 10 = 13 f (A) = 11 < f(D) = 13

A* Search f(n) = g(n) + h(n)

h(B -> G2) = 9
h(D -> G2) = 10
h(A -> G1) = 2
h(C -> G1) = 1

R

A B

C
D

G1 G2

f(A) = g(A) + h(A->G1)
f = 9 + 2 = 11

f = (9 + 1) + 1 = 11

f = 1 + 9 = 10

f = (1 + 2) + 10 = 13

f (C) = 11 < f(D) = 13

A* Search f(n) = g(n) + h(n)

h(B -> G2) = 9
h(D -> G2) = 10
h(A -> G1) = 2
h(C -> G1) = 1

R

A B

C
D

G1 G2

f(A) = g(A) + h(A->G1)
f = 9 + 2 = 11

f = (9 + 1) + 1 = 11

f = 1 + 9 = 10

f = 11

f = (1 + 2) + 10 = 13

f (G1) = 11 < f(D) = 13

A* Search
Order:
R – B – A – C – G1

There is no need to check the unfinished
path (cost of G2), because it already costs
more than the current path does.

R

A B

C
D

G1 G2

f(A) = g(A) + h(A->G1)
f = 9 + 2 = 11

f = (9 + 1) + 1 = 11

f = 1 + 9 = 10

f = 11

f = (1 + 2) + 10 = 13

f (G1) = 11 < f(D) = 13

	hw3-suppl2
	Homework 3

	homework3
	hw3-suppl
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

	hw3-suppl2.pdf
	Homework 3
	4.3

	hw3-suppl2.pdf
	Homework 3
	4.3
	4.3
	4.3

