#### CompSci 171: Intro Al

## Homework 3

Informed search





| Straight-line distance |         |
|------------------------|---------|
| to Bucharest           |         |
| Arad                   | 366     |
| Bucharest              | 0       |
| Craiova                | 160     |
| Dobreta                | 242     |
| Eforie                 | 161     |
| Fagaras                | 176     |
| Giurgiu                | 77      |
| Hirsova                | 151     |
| Iasi                   | 226     |
| Lugoi                  | 2.20    |
| Mehadia                | 2.41    |
| Neomt                  | 241     |
| Oradea                 | 2.00    |
| Pitesti                | 380     |
|                        | 10      |
| Rimnicu Vilcea         | 193     |
|                        | 253     |
| Timisoara              | 329     |
| Urriconi               | <u></u> |
| Vaslui                 | 199     |
| Zerind                 | 374     |
|                        |         |



| Straight-line distance<br>to Bucharest |      |  |
|----------------------------------------|------|--|
| Arad                                   | 366  |  |
| Bucharest                              | 0    |  |
| Craiova                                | 160  |  |
| Dobreta                                | 242  |  |
| ETOFIE                                 | 101  |  |
| Fagaras                                | 176  |  |
| Giurgiu                                | 77   |  |
| Hirsova                                | 151  |  |
| Iasi                                   | 226  |  |
| Lugoj                                  | 244  |  |
| Mehadia                                | 241  |  |
| Neamt                                  | 234  |  |
| Oradea                                 | 3.90 |  |
| Pitesti                                | 10   |  |
| Rimnicu Vikea                          | 193  |  |
| Sibiu                                  | 253  |  |
| Timisoara                              | 329  |  |
| Urziceni                               | -30  |  |
| Vaslui                                 | 199  |  |
| Zerind                                 | 374  |  |



| Straight-line distance |      |  |
|------------------------|------|--|
| to Bucharest           |      |  |
| Arad                   | 366  |  |
| Bucharact              |      |  |
| Craiova                | 160  |  |
| Dobrata                | 2.12 |  |
| Eforie                 | 161  |  |
| Fagaras                | 176  |  |
| Giurgiu                | 77   |  |
| Hirsova                | 151  |  |
| Iasi                   | 226  |  |
| Lugoj                  | 244  |  |
| Mehadia                | 241  |  |
| Neamt                  | 234  |  |
| Oradea                 | 3.90 |  |
| Pitesti                | 10   |  |
| Rimnicu Vikea          | 193  |  |
| Sibiu                  | 253  |  |
| Timisoara              | 329  |  |
| Urziceni               | 30   |  |
| Vaslui                 | 199  |  |
| Zerind                 | 374  |  |







f = 70+75+120+138+101 = 504

## 4.2 Heuristic path algorithm

$$f(n) = (2 - w)g(n) + wh(n)$$

For what value of w is this algorithm guaranteed to be optimal?

g(n): a path cost to n from a start state h(n): a heuristic estimate of cost from n to a goal state

# 4.2 Heuristic path algorithm

If h(n) is admissible, the algorithm is guaranteed to be optimal

$$f(n) = (2 - w)[g(n) + \frac{w}{2 - w}h(n)]$$

which behaves exactly like A\* search with a heuristic

$$f(n) = g(n) + \frac{w}{2 - w}h(n)$$

To be optimal, we require

$$\frac{w}{2-w} \leqslant$$

1

 $w \leq 1$ 

## 4.2 Heuristic path algorithm

For w = 0:  $f(n) = 2g(n) \rightarrow Uniform-cost search$ 

For w = 1:  $f(n) = g(n) + h(n) -> A^*$  search

For w = 2:  $f(n) = 2h(n) \rightarrow Greedy best search$ 

#### (a) Breadth-first search is a special case of uniform-cost search

When all step costs are equal (and let's assume equal to 1), g(n) is just a multiple of depth *n*. Thus, breadth-first search and uniform-cost search would behave the same in this case

$$f(n) = g(n) = 1^{*}(depth of n)$$

(b) BFS, DFS and uniform-cost search are special cases of best-first search

- BFS: f(n) = depth(n)
- DFS: f(n) = -depth(n)

- UCS: f(n) = g(n)

(c) Uniform-cost search is special case of A\* search

A\* search: f(n) = g(n) + h(n)Uniform-cost search: f(n) = g(n)

Thus, for h(n) = 0, uniform cost search will produce the same result as A<sup>\*</sup> search

# 4. Prove that the Manhattan Distance heuristic for 8-puzzle is admissible





Manhattan Distance for points  $P_1(x_1, y_1), P_2(x_2, y_2)$  is defined by:

$$d(p_1, p_2) = |x_1 - x_2| + |y_1 - y_2|$$

Start State

Goal State

Heuristic:

 $h = \sum_{n=1}^{\circ} d(n)$ 

•Tiles cannot move along diagonals, so each tile has to move at least d(n) steps to its goal

•Any move can only move one tile at a time



h – number of pairs of queens that are attacking each other

h = 2

However, number of conflicts for Queen at "b3" are:







We can propose another heuristic.

For example, we can propose heuristic derived form a relaxed (and trivial) version of 8-Queens problem, that the eight queens must be placed in the board so that no two queens are on the same row.

Thus,  $h = \Sigma$  ( # queens that are on the same row – 1) for all conflicting rows

(a) Local beam search with k=1

- We would randomly generate 1 start state
- At each step we would generate all the successors, and retain the 1 best state
- Equivalent to HILL-CLIMBING

(b) Local beam search with  $k=\infty$ 

- 1 initial state and no limit of the number of states retained
- We start at initial state and generate all successor states (no limit how many)
- If one of those is a goal, we stop
- Otherwise, we generate all successors of those states
   (2 steps from the initial state), and continue
- Equivalent to BREADTH-FIRST SEARCH

(c) Simulated annealing with T = 0 at all times

- If T is very small, the probability of accepting an arbitrary neighbor with lower value is approximately 0
- This means that we choose a successor state randomly and move to that state if it is better than the current state
- Equivalent to FIRST-CHOICE HILL CLIMBING

(d) Genetic algorithm with population size N = 1

- If selection step necessarily chooses the single population member twice, so the crossover steo does nothing.
- Moreover, if we think of the mutation step as selecting a successor at random, there is no guarantee that the successor is an improvement over the parent
- Equivalent to RANDOM WALK

Min-conflict algorithm:

- 1. Randomly choose a variable from set of problematic variables
- 2. Reassign its value to the one that results in the fewest conflicts overall
- 3. Continue until there are no conflicts

| Q1 |    |    |    |
|----|----|----|----|
|    | Q2 |    |    |
|    |    | Q3 |    |
|    |    |    | Q4 |











#### 8. Compute the following gradients

$$f(x, y, z, t) = (x - 1)(2 - y)z + (t^{3} - 1)xyz$$

$$g(x, y) = \frac{1}{1 + \exp(-(ax + by + c))}$$

$$h(x, y, z) = (x - 1)^{2} \exp(x) + (y - 2)^{3}z^{3}$$

$$c(x, y, z) = (x - z - 2y^{-2})^{b}$$

$$g(x, y) = 2(x - 1)^{2} + 2(y - 2)^{2} - 2(x - 1)(y - 2)$$

*a*, *b*, *c* are some arbitrary constants

#### 8. Compute the following gradients

$$f(x, y, z, t) = (x - 1)(2 - y)z + (t^{3} - 1)xyz$$

$$g(x, y) = \frac{1}{1 + \exp(-(ax + by + c))}$$

$$h(x, y, z) = (x - 1)^{2} \exp(x) + (y - 2)^{3} z^{3}$$

$$c(x, y, z) = (x - z - 2y^{-2})^{b}$$

$$g(x, y) = 2(x - 1)^{2} + 2(y - 2)^{2} - 2(x - 1)(y - 2)$$

$$\nabla f = \left(\frac{\partial f}{\partial X_1}, \frac{\partial f}{\partial X_2}, \frac{\partial f}{\partial X_3}, \dots, \frac{\partial f}{\partial X_n}\right)$$

#### 8. Compute the following gradients

 $f(x, y, z, t) = (x-1)(2-y)z + (t^{3}-1)xyz$  $\nabla f = ((2-y)z + (t^{3}-1)yz, -(x-1)z + (t^{3}-1)xz, (x-1)(2-y) + (t^{3}-1)xy, 3t^{2}xyz)$ 

$$g(x, y) = \frac{1}{1 + \exp(-(ax + by + c))}$$
$$\nabla g = \left(\frac{a \exp(-(ax + by + c))}{(1 + \exp(-(ax + by + c)))^2}, \frac{b \exp(-(ax + by + c))}{(1 + \exp(-(ax + by + c)))^2}\right)$$

$$h(x, y, z) = (x-1)^{2} \exp(x) + (y-2)^{3} z^{3}$$
  
$$\nabla h = ((x^{2}-1) \exp(x), 3(y-2)^{2} z^{3}, 3(y-2)^{3} z^{2})$$

$$c(x, y, z) = (x - z - 2y^{-2})^{b}$$
  

$$\nabla c = (b(x - z - 2y^{-2})^{b-1}, 4b(x - z - 2y^{-2})^{b-1}y^{-3}, -b(x - z - 2y^{-2})^{b-1})$$

$$g(x, y) = 2(x-1)^{2} + 2(y-2)^{2} - 2(x-1)(y-2)$$
  

$$\nabla g = (4x-2y, -2x+4y-6)$$

## Pseudo code for gradient descent algorithm that minimize g(x, y)

| pCur = (0,0)  | # current point |
|---------------|-----------------|
| pNxt = (5, 5) | # next point    |
| eps = 10e-2   | # step size     |

precision = 10e-5;

```
while (|pCur - pNxt|) > precision):

pCur = pNxt;

pNxt = pNxt - eps * \nabla g(pNxt);
```

print "Local minimum occurs at ", pCur



Queue: A (root)









#### A\* Search

f(n) = g(n) + h(n)

Where:



f(n) – estimated total cost of path through n to goal g(n) – cost so far to reach n h(n) – estimated cost from n to goal

Heuristic Estimates:  $h(B \rightarrow G2) = 9$   $h(D \rightarrow G2) = 10$   $h(A \rightarrow G1) = 2$  $h(C \rightarrow G1) = 1$ 









