CompSci 171: Intro AI

Homework 3

Informed search

4.1 A* search: From Lugoj to Bucharest

A* search: From Lugoj to Bucharest

Straight-line distance
to Bucharest

H-men	364
Eincthar	0
Crameram	160
Choinreta	$2+2$
Efomme	161
Wragerams	176
	7
HFirsanim	151
Imsin	그노의
T	
MTeharactir	$2+1$
Prorroset	1
Chranters	389
Pilustil	10
Reimminichn witheers	193
ctate.	--2
TTinmiscorater	328
TIEAEmose	80
Wrastini	195
Yerrimen	374

A* search: From Lugoj to Bucharest

Straight-line distance

Ahrad Einchararest	360
Crinticeta	150
Dhobrreter	242
ETMOMTE	161
Fragaras	176
Cinnryin	77
Hirsanm	151
Insi	226
Lingraj	214
NTeharactira	241
Nemant	234
Orandera	380
Phtesti	10
Refrnmicin Wilcea	193
Sibinis	253
Timmisomatra	329
Uraicemi	80
Whaslui	159
Zerinad	374

A* search: From Lugoj to Bucharest

A* search: From Lugoj to Bucharest

A* search: From Lugoj to Bucharest

A* search: From Lugoj to Bucharest

$f=70+75+120+138+101=504$

4.2 Heuristic path algorithm

$f(n)=(2-w) g(n)+w h(n)$
For what value of w is this algorithm guaranteed to be optimal?
$\mathrm{g}(\mathrm{n})$: a path cost to n from a start state
$h(n)$: a heuristic estimate of cost from n to a goal state

4.2 Heuristic path algorithm

If $h(n)$ is admissible, the algorithm is guaranteed to be optimal

$$
f(n)=(2-w)\left[g(n)+\frac{w}{2-w} h(n)\right]
$$

which behaves exactly like A^{*} search with a heuristic

$$
f(n)=g(n)+\frac{w}{2-w} h(n)
$$

To be optimal, we require $\quad \frac{w}{2-w} \leqslant 1$

$$
w \leqslant 1
$$

4.2 Heuristic path algorithm

For $w=0: f(n)=2 g(n)->$ Uniform-cost search

For $w=1: f(n)=g(n)+h(n)->A^{*}$ search

For $w=2: f(n)=2 h(n)->$ Greedy best search

4.3

(a) Breadth-first search is a special case of uniform-cost search

When all step costs are equal (and let's assume equal to 1$), g(n)$ is just a multiple of depth n. Thus, breadth-first search and uniform-cost search would behave the same in this case

$$
\mathrm{f}(\mathrm{n})=\mathrm{g}(\mathrm{n})=1^{*}(\text { depth of } n)
$$

4.3

(b) BFS, DFS and uniform-cost search are special cases of best-first search

- BFS: $\quad f(n)=\operatorname{depth}(n)$
- DFS: $\quad f(n)=-\operatorname{depth}(n)$
- UCS: $\quad f(n)=g(n)$

4.3

(c) Uniform-cost search is special case of A^{*} search

A* search: $f(n)=g(n)+h(n)$
Uniform-cost search: $f(n)=g(n)$

Thus, for $h(n)=0$, uniform cost search will produce the same result as A* search

4. Prove that the Manhattan Distance heuristic for 8-puzzle is admissible

Start State

Goal State

Manhattan Distance for points

$$
P_{1}\left(x_{1}, y_{1}\right), P_{2}\left(x_{2}, y_{2}\right) \text { is defined by: }
$$

$$
d\left(p_{1}, p_{2}\right)=\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|
$$

Heuristic: $\quad h=\sum_{n=1}^{8} d(n)$

- Tiles cannot move along diagonals, so each tile has to move at least $d(n)$ steps to its goal
-Any move can only move one tile at a time

5. Eight Queens problem

h - number of pairs of queens that are attacking each other

5. Eight Queens problem

$h=2$
However, number of conflicts for Queen at "b3" are:

5. Eight Queens problem

Therefore, the true cost to reach the goal state h^{*} is 1
Thus, h>h*
heuristic is not admissible

5. Eight Queens problem

One solution.
We can propose another heuristic.
For example, we can propose heuristic derived form a relaxed (and trivial) version of 8 -Queens problem, that the eight queens must be placed in the board so that no two queens are on the same row.

Thus, $\mathrm{h}=\Sigma$ (\# queens that are on the same row -1) for all conflicting rows

4.11

(a) Local beam search with $\mathrm{k}=1$

- We would randomly generate 1 start state
- At each step we would generate all the successors, and retain the 1 best state
- Equivalent to HILL-CLIMBING

4.11

(b) Local beam search with $\mathrm{k}=\infty$

- $\quad 1$ initial state and no limit of the number of states retained
- We start at initial state and generate all successor states (no limit how many)
- If one of those is a goal, we stop
- Otherwise, we generate all successors of those states (2 steps from the initial state), and continue
- Equivalent to BREADTH-FIRST SEARCH

4.11

(c) Simulated annealing with $\mathrm{T}=0$ at all times

- If T is very small, the probability of accepting an arbitrary neighbor with lower value is approximately 0
- This means that we choose a successor state randomly and move to that state if it is better than the current state
- Equivalent to FIRST-CHOICE HILL CLIMBING

4.11

(d) Genetic algorithm with population size $\mathrm{N}=1$

- If selection step necessarily chooses the single population member twice, so the crossover steo does nothing.
- Moreover, if we think of the mutation step as selecting a successor at random, there is no guarantee that the successor is an improvement over the parent
- Equivalent to RANDOM WALK

4-Queens problem

Min-conflict algorithm:

1. Randomly choose a variable from set of problematic variables
2. Reassign its value to the one that results in the fewest conflicts overall
3. Continue until there are no conflicts

Q1			
	Q2		
		Q3	
			Q4

4-Queens problem

	A	B	C	D	
4	Q1 ${ }^{3}$	1	2	1	All queens are attacked.
3	1	$\text { Q2 }{ }^{3}$	1	2	Pick Q2 randomly We can move Q2 to B2 or B4
2	2	1	$\text { Q3 }{ }^{3}$	1	Randomly, move Q2 to B4
1				$\text { Q4 } \quad \begin{aligned} & 3 \\ & \hline \end{aligned}$	

4-Queens problem

	A	B	C	D	
4	$\text { Q1 }{ }^{3}$	$\text { Q2 }{ }^{1}$	2	2	All queens are attacked.
3	1	3	1	1	Pick Q1 randomly We can move Q1 to A1 ~ A3
2	1	1	$\text { Q3 }{ }^{2}$		Randomly, move Q1 to A2
1		2	1	$\text { Q4 }{ }^{2}$	

4-Queens problem

4-Queens problem

4-Queens problem

8. Compute the following gradients

$$
\begin{aligned}
& f(x, y, z, t)=(x-1)(2-y) z+\left(t^{3}-1\right) x y z \\
& g(x, y)=\frac{1}{1+\exp (-(a x+b y+c))} \\
& h(x, y, z)=(x-1)^{2} \exp (x)+(y-2)^{3} z^{3} \\
& c(x, y, z)=\left(x-z-2 y^{-2}\right)^{b} \\
& g(x, y)=2(x-1)^{2}+2(y-2)^{2}-2(x-1)(y-2)
\end{aligned}
$$

a, b, c are some arbitrary constants

8. Compute the following gradients

$$
\begin{aligned}
& f(x, y, z, t)=(x-1)(2-y) z+\left(t^{3}-1\right) x y z \\
& g(x, y)=\frac{1}{1+\exp (-(a x+b y+c))} \\
& h(x, y, z)=(x-1)^{2} \exp (x)+(y-2)^{3} z^{3} \\
& c(x, y, z)=\left(x-z-2 y^{-2}\right)^{b} \\
& g(x, y)=2(x-1)^{2}+2(y-2)^{2}-2(x-1)(y-2) \\
& \quad \nabla f=\left(\frac{\partial f}{\partial X_{1}}, \frac{\partial f}{\partial X_{2}}, \frac{\partial f}{\partial X_{3}}, \ldots, \frac{\partial f}{\partial X_{n}}\right)
\end{aligned}
$$

8. Compute the following gradients

$$
\begin{gathered}
f(x, y, z, t)=(x-1)(2-y) z+\left(t^{3}-1\right) x y z \\
\nabla f=\left((2-y) z+\left(t^{3}-1\right) y z,-(x-1) z+\left(t^{3}-1\right) x z,(x-1)(2-y)+\left(t^{3}-1\right) x y, 3 t^{2} x y z\right) \\
g(x, y)=\frac{1}{1+\exp (-(a x+b y+c))} \\
\nabla g=\left(\frac{a \exp (-(a x+b y+c))}{(1+\exp (-(a x+b y+c)))^{2}}, \frac{b \exp (-(a x+b y+c))}{(1+\exp (-(a x+b y+c)))^{2}}\right) \\
h(x, y, z)=(x-1)^{2} \exp (x)+(y-2)^{3} z^{3} \\
\nabla h=\left(\left(x^{2}-1\right) \exp (x), 3(y-2)^{2} z^{3,} 3(y-2)^{3} z^{2}\right) \\
c(x, y, z)=\left(x-z-2 \mathrm{y}^{-2}\right)^{b} \\
\nabla c=\left(b\left(x-z-2 \mathrm{y}^{-2}\right)^{b-1}, 4 \mathrm{~b}\left(x-z-2 \mathrm{y}^{-2}\right)^{b-1} y^{-3},-b\left(x-z-2 \mathrm{y}^{-2}\right)^{b-1}\right) \\
g(x, y)=2(x-1)^{2}+2(y-2)^{2}-2(x-1)(y-2) \\
\nabla g=(4 \mathrm{x}-2 \mathrm{y},-2 \mathrm{x}+4 \mathrm{y}-6)
\end{gathered}
$$

Pseudo code for gradient descent algorithm that minimize $g(x, y)$

$$
\begin{aligned}
& p C u r=(0,0) \\
& p N x t=(5,5) \\
& e p s=10 e-2
\end{aligned}
$$

\# current point
\# next point
\# step size

precision $=10 e-5$;
while (|pCur - pNxt|) > precision):

$$
\begin{aligned}
& p C u r=p N x t ; \\
& p N x t=p N x t-e p s * \quad \nabla g(p N x t) ;
\end{aligned}
$$

print "Local minimum occurs at ", pCur

Uniform Cost Search

Goal: path AI
Queue: A (root)

Uniform Cost Search

Uniform Cost Search

Note: nodes in the queue are sorted by distance from the root

Uniform Cost Search

At node G:
Queue: $\mathrm{I}=4, \mathrm{C}=4, \mathrm{E}=4, \mathrm{~B}=5, \mathrm{H}=5$
Note: nodes in the queue are sorted by distance from the root

Uniform Cost Search

A* Search

$$
f(n)=g(n)+h(n)
$$

Where:
$f(n)$ - estimated total cost of path
\quad through n to goal
$g(n)$ - cost so far to reach n
$h(n)$ - estimated cost from n to goal

Heuristic Estimates:

$$
\begin{aligned}
& h(B->G 2)=9 \\
& h(D->G 2)=10 \\
& h(A->G 1)=2 \\
& h(C->G 1)=1
\end{aligned}
$$

A* Search

$$
\begin{aligned}
& f(n)=g(n)+h(n) \\
& h(B->G 2)=9 \\
& h(D->G 2)=10 \\
& h(A->G 1)=2 \\
& h(C->G 1)=1
\end{aligned}
$$

A* Search

$$
\begin{aligned}
& f(n)=g(n)+h(n) \\
& h(B->G 2)=9 \\
& h(D->G 2)=10 \\
& h(A->G 1)=2 \\
& h(C->G 1)=1
\end{aligned}
$$

$$
f(A)=11<f(D)=13
$$

A* Search

$$
\begin{aligned}
& f(n)=g(n)+h(n) \\
& h(B->G 2)=9 \\
& h(D->G 2)=10 \\
& h(A->G 1)=2 \\
& h(C->G 1)=1
\end{aligned}
$$

A* Search

$$
\begin{aligned}
& f(n)=g(n)+h(n) \\
& h(B->G 2)=9 \\
& h(D->G 2)=10 \\
& h(A->G 1)=2 \\
& h(C->G 1)=1
\end{aligned}
$$

A* Search

Order:
R-B - A - C - G1

There is no need to check the unfinished path (cost of G2), because it already costs more than the current path does.

