CompSci 171: Intro AI

Homework 2

Uninformed search

Breadth-first search

Level:

Breadth-first search

Level: L=0
(root)

$$
\mathrm{L}=1
$$

$$
\mathrm{L}=2
$$

$\mathrm{L}=3$

$$
\mathrm{L}=4
$$

)

Number of nodes generated: LO: 1

L1: 2

L2: 4

L3: 8

L4: 16

Time/space complexity:

Every state has $b=2$ successors:
At root level search tree generates 2 nodes (each of which generates 2 more nodes, so...) At 1 st level search tree generates 4 nodes (...)
At 2 nd level search tree generates 8 nodes (...)
At $3^{\text {rd }}$ level search tree generates $16-2$ nodes (GOAL node is at this level)

Breadth-first search

Level:
L=0
(root)

$$
\mathrm{L}=1
$$

$$
\mathrm{L}=2
$$

$$
\mathrm{L}=3
$$

$$
\mathrm{L}=4
$$

Explore node(s) first, than add successor nodes in the fringe:
Every state has $b=2$ successors:
After examining root level : generates 2 nodes After examining $1^{\text {st }}$ level: generates 4 nodes After examining $2^{\text {nd }}$ level: generates 8 nodes Examining $3^{\text {rd }}$ level - GOAL node found!!!!!

Number of nodes generated: LO: 1

L1: 2

L2: 4

L3: 8

L4: 16

Time/space complexity:

$$
b+b^{2}+b^{3}=o\left(b^{1}\right)
$$

Depth-First Search

Order: $1,2,5,11,12,6,13,3,7,8,4,9,14,15,10,16,17$

Depth-First Iterative-Deepening Search

Order: 1

Depth-First Iterative-Deepening Search

Order: 1, 2, 3, 4

Depth-First Iterative-Deepening Search

Order: 1, 2, 5, 6, 3, 7, 8, 4, 9, 10

Depth-First Iterative-Deepening Search

Order: $1,2,5,11,12,6,13,3,7,8,4,9,14,15,10,16,17$

Breath-First Search

Order: $1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17$

Traveling Salesman Problem

- Formulation:
- States: cities
- Initial state: A
- Successor function: Travel from one city to another connected by a road
- Goal test: the trip visits each city only once that starts and ends at A.
- Path cost: traveling time

Traveling Salesman Problem

Can be represented as a graph
Nodes - states
Arcs - actions

States: A, B, C, D, E

Traveling Salesman Problem

Complete state space:

- Initial state (state A)
- All possible states and actions:

State A:
-go right to B , cost 4 -go down-right to E, cost 3 -go left to C, cost 3 -go down to C, cost $1 \quad$-go up-left to E, cost 1

State B:
-go left to A, cost 4
-go down to D, cost 5
-go down-left to E, cost 2
State C:
-go up to A, cost 1
-go right to D, cost 3
-go up-right to E, cost 2

State D:
-go up to B, cost 5

State E:

-go up-left to A, cost 3
-go up-right to B, cost 2
-go down left to C, cost
2
-go down-right to D,
cost 1

Traveling Salesman Problem

Breath-first search -the shortest trip from A, that visits all cities

Traveling Salesman Problem

Time and Space complexity: DFS vs. BFS

depth $_{\text {goal }}=$ depth $_{\text {max }}$

Time Space
BFS: $O\left(b^{d}\right) \quad O\left(b^{d}\right)$
DFS: $O\left(b^{d}\right) \quad O(b d)$

Traveling Salesman Problem

Uniform-cost search?

Uniform-cost search algorithm is optimal with positive cost function. It will find the path with the lowest path cost.

Therefore, if cost = traveling time, uniformcost search will work well with this problem

