
Master the Tiles framework

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. Getting started .. 2
2. The Tiles framework and architecture 5
3. Tile layouts .. 8
4. Tile definitions .. 18
5. Advanced Tile topics... 23
6. Lists... 28
7. Advanced definition concepts .. 34
8. Wrap-up and resources ... 42

Master the Tiles framework Page 1 of 44

Section 1. Getting started

What is this tutorial about?

This tutorial describes how to use the Tiles framework to create reusable presentation
components. (At its creation, the Tiles framework was originally called Components.
The name was changed because "components" means too many different things, but
the spirit of the original name remains.) Beyond site layouts, however, you can do
much more with tiles. You can, for example, compartmentalize your presentation tier to
better reuse layouts, HTML, and other visual components.

This tutorial strives to impart the basics of using the Tiles framework, then takes your
knowledge up a notch. By the time you finish, you will be able to use the more
advanced Tiles features to create reusable components.

Note: Throughout this tutorial, the terms tile and page are used interchangeably
because any Web resource can be a tile. A tile layout represents a special type of tile
you can use to place other tiles within it. A tile layout can be used as a tile in another
tile layout.

Getting down to specifics, this tutorial:

• Defines the Tiles framework and architecture.

• Covers the Tiles architecture and how it integrates with Struts.

• Clarifies key Tiles concepts.

• Demonstrates how to build and use a tile layout as a site template.

• Demonstrates how to use tile definitions both in XML and JavaServer Pages (JSP)
code.

• Defines tile scope and how to move objects in and out of tile scope.

• Works with attribute lists.

• Shows how to nest tiles.

• Demonstrates how to build and use a tile layout as a small visual component.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 2 of 44 Master the Tiles framework

• Shows how to subclass a definition.

• Creates a controller for a tile.

• Demonstrates using a tile as an ActionForward.

Who should take this tutorial?

If you find yourself writing the same three lines of JSP code on every page, or you want
to define complex template layouts easily, then you will benefit from this tutorial.

This tutorial assumes you have a solid understanding of Java programming, MVC
(Model-View-Controller), Model 2, and JSP technology. While a good Struts
background lets you get the most out of this tutorial, if you're adept at JSP
programming, you should be able to follow most of what is going on.

Software requirements and code installation

To complete this tutorial, you will need:

• A 1.1, 1.2, or 2.0 JSP-compliant servlet/JSP container. Apache Tomcat 3.x or higher
is an excellent choice. Note: The tutorial's examples were written with a JSP
1.2-compliant container.

• The Tiles framework. You can get the framework as part of the Struts 1.1 download
or standalone from the Tiles Web site.

• The source code. I've supplied two versions: one with jar files and one without jar
files for those of us who are bandwidth impaired. Struts ships with a blank war file,
struts-blank.war (under the webapps directory), which illustrates which
configuration files and jar files you need, and where you typically put them. You'll use
the same structure for the example code.

See Resources on page 43 for information on these materials and additional resources.

About the author

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Master the Tiles framework Page 3 of 44

http://jakarta.apache.org/tomcat/index.html
http://jakarta.apache.org/tomcat/index.html
http://jakarta.apache.org/tomcat/index.html
http://jakarta.apache.org/tomcat/index.html
http://jakarta.apache.org/tomcat/index.html
http://jakarta.apache.org/struts/index.html
http://jakarta.apache.org/struts/index.html
http://www.lifl.fr/~dumoulin/tiles/
http://www.lifl.fr/~dumoulin/tiles/
http://www.lifl.fr/~dumoulin/tiles/
j-tiles-source.zip
j-tiles-source.zip
j-tiles-source.zip
j-tiles-source.zip
j-tiles-source-nojar.zip
j-tiles-source-nojar.zip
j-tiles-source-nojar.zip
j-tiles-source-nojar.zip

Rick Hightower enjoys working with Java technology, Ant, Struts, the IBM Emerging
Technologies Toolkit (ETTK), and XDoclet. Rick currently serves as the CTO of
ArcMind Inc., a mentoring, consulting, and training company focusing on enterprise
development. Rick, a regular IBM developerWorks contributor, has written more than
10 tutorials ranging from EJB (Enterprise JavaBeans) technology to Web services to
XDoclet.

While working at eBlox, Rick and the eBlox team used Struts to build two frameworks
and an ASP (application service provider) for online e-commerce stores. They started
using Struts long before the 1.0 release. Rick recently helped put together a
well-received course for Trivera Technologies on Struts that runs on Tomcat, Resin EE,
WebSphere Studio Application Developer, and others.

Rick co-authored Mastering Struts, 2nd edition with James Goodwill (Wrox Press). Rick
also co-wrote Java Tools for Extreme Programming (John Wiley & Sons, 2001), the
best-selling software development book on Amazon.com for three months in 2002. It
covers applying Ant, JUnit, Cactus, and more to J2EE (Java 2 Platform, Enterprise
Edition) development. Rick also contributed two chapters to Mastering Tomcat
Development (John Wiley & Sons, 2002), as well as many other publications.

Rick spoke at the 2003 JavaOne Developers Conference on EJB CMP/CMR and
XDoclet, and at TheServerSide.com Software Symposium on J2EE development with
XDoclet. Additionally, Rick has spoken at JDJEdge and WebServicesEdge. Moreover,
Rick spoke about advanced Struts topics at the Complete Programmer Network
software symposiums (in six different cities across the US).

When not traveling around the country teaching the Trivera Struts course, speaking at
conferences about Struts, or doing Struts consulting, Rick enjoys drinking coffee at an
all-night coffee shop, writing about Struts and other topics, and writing about himself in
the third person.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 4 of 44 Master the Tiles framework

http://www.rickhightower.com
http://www.rickhightower.com
http://www.arc-mind.com
http://www.arc-mind.com
http://www.rickhightower.com/JavaXPToolkit/
http://www.rickhightower.com/JavaXPToolkit/
http://www.rickhightower.com/JavaXPToolkit/
http://www.rickhightower.com/JavaXPToolkit/
http://www.rickhightower.com/JavaXPToolkit/

Section 2. The Tiles framework and architecture

Tiles framework

The Tiles framework turns the jsp:includes concept inside out -- thus letting you
more feasibly create reusable pages. With the Tiles framework, developers can build
pages by assembling reusable tiles. You should think of tiles as visual components.

A tile layout is a special JSP page that allows tiles to be placed. Tile layouts dictate
where the tiles will be laid out on the page. In many respects the tile layout resembles a
template layout. In fact, if you have used Struts templates before, then you will note
that the Tile frameworks is backwards compatible with the template custom tag library.

Clarification of terms

The terms presented in this tutorial may seem overwhelming at first, so before we
discuss the Tiles framework in more detail, let's define some important terms.

Glossary of terms

Tiles The template framework for Struts to create reusable presentation components.

Page A Web resource included by a tile layout.

Tile The same as a page.

Region An area in a tile layout that inserts another tile. Regions have logical names like
header, footer, and so on.

Tile layout A JSP page that describes where other pages should be positioned. Acting
as a template, a tile layout defines regions where other tiles are inserted. A tile layout
can be a tile to another tile layout.

Definition Defines parameters for calling a tile layout.

Tile layouts

In some ways, the tile layout works like a display function. To use a tile layout, call it
with the tiles:insert tag. When you invoke the tile layout, you pass parameters.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Master the Tiles framework Page 5 of 44

The parameters become attributes to the tile layout; for example, the parameters are
put into tile scope.

The parameters passed when invoking a tile can be other JSP pages or Web
resources, which you can insert at predefined locations, called regions, in the layout.
The parameters also consist of strings you can insert into the tile layout. In fact, you
can pass many types of objects as parameters to the tile. The parameters become
attributes in the tile scope available only to that tile.

The tile scope resembles a page scope in that the tile scope is less general than a
request scope. The tile scope lets tile users pass arguments, called attributes, to the
tile. The tile scope lets you pass variables available only to that tile layout or tile.
Special custom tags let you copy attributes from tile scope to page, request, session, or
application scope, or display the attribute as an included Web resource.

Default arguments

Some programming languages, like C++, Visual Basic, and Python, let you pass
default arguments to functions and methods. To further extend the display function
metaphor, the Tiles framework also lets you pass default arguments to a tile layout. To
do so you must define a tile definition. Tile definitions let you define default parameters
for tiles. Definitions can be defined in JSP code or XML.

A definition can extend other definitions in a way similar to how a class can extend
another class. By using definitions and tile layouts, you can create reusable display
components.

You can use Tiles with or without Struts. To use Tiles with Struts, you will use the Tiles
taglibs that ship with Struts. In addition, the Tiles framework includes its own
RequestProcessor to handle tile layouts as ActionForwards -- letting you forward
to a tile definition instead of a JSP page. Tiles does that by overriding the
processActionForward in its custom RequestProcessor.

A typical tile layout

A typical tile layout may define rectangular regions for the header, footer, menu, and
body, as depicted in Figure 1.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 6 of 44 Master the Tiles framework

The regions shown in Figure 1 may map to a Web site like that seen in Figure 2.

Notice that you can easily redefine reusable pieces of this application just by passing
the correct parameters. For example, the employee listing might use the same header
and footer but a different menu and body, yet still can use all of the general layout
regions defined by the tile layout. That lets you reuse the same tile layout with different
contents. Instead of including the HTML markup, you include the content in the
markup.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Master the Tiles framework Page 7 of 44

Section 3. Tile layouts

Build your first tile layout

Wouldn't it be nice for your site to reuse the same layout (implemented with an HTML
table) and images without duplicating the same HTML code?

Tiles shines in creating a common look and feel for your site. That said, many
developers don't realize that Tiles also shines at creating reusable components
implemented in JSP.

If you find yourself repeating the same HTML code in multiple pages, then consider
those pages candidates for a tile layout. Similarly, if you employ the same HTML or
JSP tags in various places on various pages, then you're well positioned to use tiles to
create a small visual component.

As a Tiles framework example, on the following pages you will refactor a simple stock
quote application to utilize a tile layout, as shown in Figure 3.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 8 of 44 Master the Tiles framework

Sample application

The simple sample application features a stock quote page with a form that takes a
single parameter, a stock quote symbol (index.jsp). Another page displays the value of
the stock quote (quote.jsp).

Study the following two code listings. You will refactor them to use all manner of tile
layouts.

index.jsp

<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>
<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>

<html>
<head>
<title>Stock Quote</title>

</head>

<body>
<table width="500" border="0" cellspacing="0" cellpadding="0">
<tr>
<td> </td>

</tr>
<tr bgcolor="#36566E">
<td height="68" width="48%">
<div align="left">
<img src="images/hp_logo_rickhightower.gif"
width="220"
height="74">

</div>
</td>

</tr>
<tr>
<td> </td>

</tr>
</table>

<html:form action="Lookup">
<table width="45%" border="0">
<tr>
<td><bean:message key="app.symbol" />:</td>
<td><html:text property="symbol" /></td>

</tr>
<tr>
<td colspan="2" align="center"><html:submit /></td>

</tr>
</table>

</html:form>

</body>
</html>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Master the Tiles framework Page 9 of 44

quote.jsp

<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>

<html>
<head>
<title>Stock Quote</title>

</head>
<body>

<table width="500" border="0" cellspacing="0" cellpadding="0">
<tr>
<td> </td>

</tr>
<tr bgcolor="#36566E">
<td height="68" width="48%">
<div align="left">

</div>
</td>

</tr>
<tr>
<td> </td>

</tr>
<tr>
<td> </td>

</tr>
<tr>
<td> </td>

</tr>
<tr>
<td>
<bean:message key="app.price" />: <%= request.getAttribute("PRICE") %>

</td>
</tr>
<tr>
<td> </td>

</tr>
</table>

</body>
</html>

To learn how to use the Tiles framework, first you must write a tile layout, then you'll
refactor the two example pages so they don't repeat so much HTML code.

Step-by-step tile layout

To create a tile layout you need to do the following:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 10 of 44 Master the Tiles framework

1. Find the similarities between the two pages.

2. Create a new layout page.

3. Create two new content pages that contain just the differences between
EmployeeListing.jsp and DeptListing.jsp.

4. Insert the tile layout in the page -- that is, have EmployeeListing.jsp and
DeptListing.jsp insert the tile layout into their page, passing the content as a
parameter and any other necessary parameters (like Title).

Because finding similarities between the two pages requires skill in HTML layout and
Web site usability, it proves to be more of an art than a science. For some reason it
helps if you have purple hair and body piercing. If you don't think so, just ask my good
friend Boo.

This tutorial focuses on Struts, not those necessary skills in HTML layout and Web site
usability. For that matter, you will not learn about body piercing or purple hair dye. In
fact, the example's HTML layouts are deliberately simple so as not to detract from the
Tiles framework.

Create a tile layout

Once you find the similarities between pages (the hard part), you can create the new
layout page (the easy part). To create a tile layout, you must do the following:

• Import the tiles taglib into the JSP and any other taglibs you need with the taglib
directive.

• Use string parameters to display things like the page title using the
tiles:getAsString tag.

• Insert the tiles in the correct regions of the layout using the tiles:insert tag.

• Pass any needed parameters to the internal tiles using tiles:put -- a subtag of
tiles:insert.

Import the tiles taglib into the JSP and any other taglibs you need as follows
(siteLayout.jsp):

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Master the Tiles framework Page 11 of 44

<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>
<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>
<%@ taglib uri="/WEB-INF/struts-tiles.tld" prefix="tiles" %>

Note: To use the tiles taglib, don't forget to include the tag library in your web.xml file:

<taglib>
<taglib-uri>/WEB-INF/struts-tiles.tld</taglib-uri>
<taglib-location>/WEB-INF/struts-tiles.tld
</taglib-location>

</taglib>

Next, use string parameters to display things like the page title. You not only want to
change the page's content, you also want to change the title that appears in the
browser. To do so, pass in a title that the tile layout will use:

<html>
<head>
<title>

<tiles:getAsString name="title" ignore="true"/>
</title>

</head>

Notice you use the tiles:getAsString tag to display string parameters. Not only
can you pass string parameters, you can also pass other pages to be inserted into this
page. That assumes the calling JSP page passes a title to this tile layout; otherwise,
the title will be blank.

Note: The ignore attribute:

The ignore attribute, if true, means ignore the attribute if missing. Otherwise, if
ignore is false, the tiles framework will throw an exception and the page will not
display if the parameter does not pass (false is the default).

To insert the content JSP, use the tiles:insert tag, which inserts any page or Web
resource that the framework refers to as a tile. The tag effectively defines a region in
the tile layout. Remember, the objective of the tile layout is to lay out the tiles into the
layout. Here is an example of inserting a tile into the layout:

<tiles:insert attribute="content"/>

The example above is really simple. What if you want to insert a tile and pass it items in
the current page scope? For example, it's possible to pass the title parameter (in tile
scope) to header.jsp with the Tiles framework.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 12 of 44 Master the Tiles framework

Call other tiles (passing attributes)

Any time you insert a tile, you can optionally pass it parameters. The parameters you
pass the tile will be put into the tile's tile scope (referred to as tile attributes). For
example, in addition to having the title display in the browser's title bar, you'd like the
tile to appear in the page's header region.

The header.jsp file accomplishes that. Even though the title variable is in the tile layout
page scope, it will not be in the scope of the tiles the tile layout inserts. Each tile and
tile layout gets its own context -- that is, its own tile scope. Thus, you must pass the tile
variable to the header tile as follows:

<tiles:insert attribute="header" ignore="true">
<tiles:put name="title"

beanName="title" beanScope="tile"/>
</tiles:insert>

The tiles:put tag puts the title parameter in this tile layout scope into the header
tile's scope. Then the header tile can use the parameter just as the tile layout did using
the tiles:getAsString tag. The parameter name is the name of the attribute in the
header's tile scope. The bean parameter is the name of the bean in the current scope
(siteLayout.jsp). The beanScope is the scope where you look for this attribute (possible
values are page, tile, request, session, and application). You can pass beans from any
scope to the tile.

Complete listing of tile layout

Next, you'll see the complete new layout page (siteLayout.jsp) that quote.jsp and
index.jsp will use:

<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>
<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>
<%@ taglib uri="/WEB-INF/struts-tiles.tld" prefix="tiles" %>

<html>

<head>
<title>

<tiles:getAsString name="title" ignore="true"/>
</title>

</head>

<body>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Master the Tiles framework Page 13 of 44

<table width="500" border="0" cellspacing="0" cellpadding="0">

<tr bgcolor="#36566E">
<td height="68" width="48%">
<div align="left">
<img src="images/hp_logo_rickhightower.gif"

width="220" height="74">
</div>

</td>
</tr>

<tr>
<td height="68" width="2000">

<tiles:insert attribute="header" ignore="true">
<tiles:put name="title"

beanName="title" beanScope="tile"/>
</tiles:insert>

</td>
</tr>
<tr>
<td>

<div align="center">
<tiles:insert attribute="content"/>
</div>

</td>
</tr>
<tr>
<td>

<tiles:insert attribute="footer" ignore="true"/>
</td>

</tr>

</table>

</body>
</html>

Please take a few moments to study the above listing. Notice how you insert tiles into
various regions (header, footer, content), and how you employ an HTML layout to
define the regions for tiles, thus defining the complete layout for your application.

Use a tile layout

Now that you've defined a tile layout that uses tiles, you need to use the layout. Both
index.jsp and quote.jsp will use the same layout. While that seems like a lot of work for
just two pages, for a real Web application you might use the same layout for 20 pages
or more. This way, you won't have to repeat the HTML or include several JSP
fragments in 20 locations.

Note: Why not just use jsp:include?

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 14 of 44 Master the Tiles framework

Including JSP fragments in the right location proves a fragile way to reuse HTML.
Imagine 20 pages including the same five JSP fragments -- you'd have to repeat
yourself 100 times.

To use a tile, do the following steps:

1. Import the tiles taglib with the taglib directive.

2. Use tiles:insert to insert the tile layout into the current page.

3. Use tiles:put to pass string parameters.

4. Use tiles:put to pass in parameter tiles.

By using a tile layout, you can externalize the entire HTML needed for the site's layout
in one location, and then just insert it in each page. Take a look at the following
example, which shows how to insert the tile layout into index.jsp:

<%@ taglib uri="/WEB-INF/struts-tiles.tld" prefix="tiles" %>

<tiles:insert page="/siteLayout.jsp" flush="true">

<tiles:put name="title" type="string"
value="Get Rick Hightower Stock Quote" />

<tiles:put name="header" value="/header.jsp" />
<tiles:put name="footer" value="/footer.jsp" />
<tiles:put name="content" value="/indexContent.jsp"/>

</tiles:insert>

Now, when you want to do the same thing in quote.jsp, you merely change the content
and the header.

You need to call the tile layout (the display function) with the insert tag. (Notice the
tiles:insert tag to insert the tile layout into the current page):

<tiles:insert page="/siteLayout.jsp" flush="true">

The page attribute specifies the tile layout you defined in the last section. If the flush
attribute is set to true, this tile (and page up to this point) will be written to the browser
before the rest of the page (or the buffer fills and forces a flush).

To change the page title between quote.jsp and the header.jsp, use the subtag
tiles:put:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Master the Tiles framework Page 15 of 44

<tiles:put name="title" type="string"
value="Get Stock Quote" />

Notice how tiles:put passes string parameters to the tile layout. The tiles:put's
name attribute tag specifies the parameter name. The tiles:put's type attribute
specifies the parameter's type. Lastly, the value parameter is passed the title
attribute's value. That lets you pass simple strings as parameters when the tile layout
(display function) gets called with the tiles:insert tag. The parameters become tile
layout attributes; that is, they get inserted into the tile scope of the tile layout.

Notice how you pass in three tiles as header, footer, and content parameters
(header.jsp, footer.jsp, and indexContent.jsp):

<tiles:put name="header" value="/header.jsp" />
<tiles:put name="footer" value="/footer.jsp" />
<tiles:put name="content" value="/indexContent.jsp"/>

The header.jsp page will be inserted in the tile layout's header region. The footer.jsp
page will be inserted into the tile layout's footer region. The indexContent.jsp page will
be inserted into the tile layout's content region. If you want to insert different content
and title, simply change the content parameter's value.

Notice the form for index.jsp no longer resides in index.jsp. The form now resides in
indexContent.jsp, listed as follows:

<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>
<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>

<html:form action="Lookup">
<table width="45%" border="0">
<tr>
<td><bean:message key="app.symbol" />:</td>
<td><html:text property="symbol" /></td>

</tr>
<tr>
<td colspan="2" align="center"><html:submit /></td>

</tr>
</table>

</html:form>

In addition to specifying tiles as JSP pages, you can pass text in the body of the
tiles:put tag as the tile. The quote.jsp page does just that:

<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>
<%@ taglib uri="/WEB-INF/struts-tiles.tld" prefix="tiles" %>

<tiles:insert page="/siteLayout.jsp" flush="true">
<tiles:put name="title" type="string"

value="Rick Hightower Stock Quote" />

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 16 of 44 Master the Tiles framework

<tiles:put name="header" value="/header.jsp" />
<tiles:put name="footer" value="/footer.jsp" />
<tiles:put name="content" type="string">

<bean:message key="app.price"/>
<%= request.getAttribute("PRICE") %>

</tiles:put>
</tiles:insert>

Notice that the tiles:put tag's body contains the contents of quote.jsp. Everything
else is defined by the layout and the same tiles you used in the last example. The
advantage is that you reduce the number of JSP pages in the system. I've seen long
debates about which approach works best, and I've concluded it depends on how
much code will be in the body of the put.

Do you see a problem here? There is a rule: Don't repeat yourself (DRY), and you
have broken it. Do you see how?

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Master the Tiles framework Page 17 of 44

Section 4. Tile definitions

Create a definition

Unfortunately, both quote.jsp and index.jsp break the DRY rule in that they repeat
defining the header and footer parameters. Because they both use the same parameter
values, it would be nice not to repeat the same parameters for both pages.

Imagine a real application in which the tile layout included many more regions (say,
eight) and many more pages used that tile layout. You'd find it a pain to repeat every
parameter every time you wanted to use a tile layout. Since most pages will use the
same header and footer, you'd benefit by defining them in one place instead of in each
page.

Going back to the display function metaphor, remember in some respects the tile layout
resembles a display function. You invoke the tile layout using tiles:insert and
pass in parameters using tiles:put. The parameters are other JSP pages and
strings that can be inserted into regions of the tile layout.

You now need the ability to define default parameters corresponding to the header and
footer regions. The Tiles framework also lets you pass default arguments to a tile
layout using definitions.

In this section, you'll learn to create and use definitions. Definitions define default
parameters for tile layouts. You can define definitions in JSP code or XML. By the end
of this section you will be able to do either.

Create and use a JSP definition

You'll find creating a definition with the JSP pages the easiest method, as it requires
the least configuration.

To create a JSP definition do the following:

1. Import the tiles tag library using the taglib directive.

2. Ensure that the definition is defined only once using the logic:notPresent tag.

3. Define the definition with the tiles:definition tag passing the JSP page that
defines the tile layout and the scope of the newly defined definition.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 18 of 44 Master the Tiles framework

4. Define the default parameters with the tiles:put tag.

In the listing below, siteLayoutDefinition.jsp defines a definition that uses siteLayout.jsp
as the tile layout and defines default parameters for the header and footer parameters
(as well as others parameters):

<%@ taglib uri="/WEB-INF/struts-logic.tld" prefix="logic" %>
<%@ taglib uri="/WEB-INF/struts-tiles.tld" prefix="tiles" %>

<logic:notPresent name="siteLayoutDef" scope="application">
<tiles:definition id="siteLayoutDef"

page="/siteLayout.jsp"
scope="application">

<tiles:put name="title" type="string"
value="Rick Hightower Stock Quote System" />

<tiles:put name="header" value="/header.jsp" />
<tiles:put name="footer" value="/footer.jsp" />
<tiles:put name="content" type="string">

Content goes here
</tiles:put>

</tiles:definition>
</logic:notPresent>

The tiles:definition tag defines a JavaBean component of type
ComponentDefinition
(org.apache.struts.tiles.ComponentDefinition).
ComponentDefinition has getter and setters for all of the attributes that you can
pass it. The logic:notPresent tag ensures that the ComponentDefinition is
only created once per application by checking to see if it's already in scope before
defining it.

Note: Defaults can be evil.

Notice that you also define default parameters for content and title. That, however, is
considered bad. Why? If someone forgets to use the title, they will get the default.
Because the title should change for every page, you should not define a default for it.
That way if someone forgets to pass the title, the tile layout will fail. In order for it to fail,
you need to do two things:

• Don't define a default in the definition.

• Don't set ignore equal to true when defining the region in the tile layout with the
tiles:insert tag.

Use a JSP tile definition

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Master the Tiles framework Page 19 of 44

Using a tile definition resembles using a tile layout directly. The only differences: you
will specify the definition instead of the tile layout JSP page, and you will pass in less
parameters with tiles:put.

To use a tile definition, do the following:

1. Import the tiles tag library with the taglib directive.

2. Include the JSP page that defines the definition with jsp:include.

3. Use the tiles:insert tag, but specify the definition bean name and scope instead
of the tile layout page.

4. Use the tiles:put attribute to specify title and content only (not header and footer
parameters).

Below you'll find an example of using a tiles definition (index2.jsp):

<%@ taglib uri="/WEB-INF/struts-tiles.tld" prefix="tiles" %>
<jsp:include page="siteLayoutDefinition.jsp"/>

<tiles:insert beanName="siteLayoutDef" beanScope="application">
<tiles:put name="title" type="string"

value="Get Rick Hightower Stock Quote 2" />
<tiles:put name="content" value="indexContent2.jsp"/>

</tiles:insert>

Notice that you specify the definition you defined in the last section with the beanName
attribute siteLayoutDef. The beanName attribute value corresponds to the id
attribute value of the bean definition in the last section. Please notice that you specify
two parameters with tiles:put instead of four, which means less typing and less
code to maintain -- the joys of DRY.

Do you see a problem here? You must create one JSP page for the definition
(siteLayoutDefinition.jsp), one for the content (indexContent.jsp), one for index.jsp
itself, one for the layout (siteLayout.jsp), one for the header, and one for the footer.
Whew! Sum it up and you get six JSP pages instead of one (and this is a simple
example). Granted you are getting reusability, but it appears you get this at the
expense simplicity.

Another weird thing about this example is the definition itself. JSP pages are meant to
express visual things in a document-centric fashion. However, the definition has
nothing inherently visual. In fact, it is mostly just configuration. A layout may have
several sets of definitions, so you'd find it a real hassle to have a JSP page for each. It
would be nice to have the configuration data in one location, but how?

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 20 of 44 Master the Tiles framework

Note: Use jsp:include -- not @page include -- for definitions

If you have worked with tiles before, you may have seen examples that use the include
directive (@page include) instead of the dynamic include action (jsp:include). I
prefer jsp:include because the include directive happens at translation time, and,
unless the page that includes it changes, the new JSP definition will not be redefined.
Save yourself some development hassles and use the jsp:include action instead.
The performance difference proves negligible (the directive is slightly faster), but the
pain of dated JSP definitions boggles the mind.

Create and use an XML definition

XML definitions answer the problems with the explosion of non-visual JSPpages.
Instead of defining one definition per JSPpage, you can define all definitions in one
configuration file. Before you can start using XML definition, however, you need to use
the corresponding Tiles plug-in for Struts:

<plug-in className="org.apache.struts.tiles.TilesPlugin" >
<set-property property="definitions-config"

value="/WEB-INF/tiles-defs.xml" />
<set-property property="moduleAware" value="true" />
<set-property property="definitions-parser-validate" value="true" />

</plug-in>

You need to add the above code to your struts configuration file. Notice that the
definition-config property specifies the XML file that will contain the XML-based
definitions. You also specify that the tiles engine is module-aware and that it validates
the XML file.

Create an XML tile definition

Creating an XML definition becomes easy once you define the plug-in. You merely add
another entry in the tiles definition file (tiles-def.xml for our example):

<tiles-definitions>

<definition name="siteLayoutDef" path="/siteLayout.jsp">
<put name="title" value="Rick Hightower Stock Quote System" />
<put name="header" value="/header.jsp" />
<put name="footer" value="/footer.jsp" />
<put name="content" type="string">

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Master the Tiles framework Page 21 of 44

Content goes here
</put>

</definition>
...

The root element is tiles-definition; -- all tile definitions for this module will be
defined inside the tiles-definition element.

The definition element specifies a tile definition. The definition defined above
functionally equals the JSP version you defined earlier. Notice that the definition's
attributes differ a little: You use name instead of id and path instead of page.
(Irritating, isn't it?) If you know how to define a JSP-based definition, then defining an
XML-based definition proves child's play, as they are nearly identical in form and
function.

Use an XML tile definition

Now that you've defined the XML definition, you need to change quote.jsp and
index.jsp to use it. Using the definition proves little different than before. The only
difference is the attributes you pass the tiles:insert tag as follows (index3.jsp):

<%@ taglib uri="/WEB-INF/struts-tiles.tld" prefix="tiles" %>
<tiles:insert definition="siteLayoutDef">

<tiles:put name="title" type="string"
value="Get Rick Hightower Stock Quote 3" />

<tiles:put name="content" value="indexContent3.jsp"/>
</tiles:insert>

Notice that now you use the definition attribute to specify the name of the definition
defined in the tiles definition file (tiles-def.xml) instead of using beanName and
beanScope. Also notice that you need not use jsp:include or
logic:notPresent in the definition JSP.

Once you take the leap of faith and start using XML definitions instead of JSP
definitions, life with tiles becomes a little easier. You write less code and maintain fewer
tiny, non-visual JSP pages.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 22 of 44 Master the Tiles framework

Section 5. Advanced Tile topics

Understand and use tile scope

Remember the tiles framework defines an additional scope called tile scope, similar to
page scope. Like page scope, tile scope is more private than request scope. The tile
scope lets the tiles user pass arguments (called parameters) to the tile. In essence, it
makes the page callable like a display function.

Remember, jsp:include lets you call a page passing it request parameters
(jsp:param). The tiles:insert tag resembles jsp:include but is more powerful.
The tiles:insert tag lets you call a page passing it subpages (called tiles) and
attributes. The tile scope essentially lets you pass variables available only to that tile
layout.

You'll understand tile scope if you know how it is implemented. In my travels, I created
a debug utility called listTileScope that lets me print out variables in tile scope, as seen
in the code snippet below:

import org.apache.struts.taglib.tiles.ComponentConstants;
import org.apache.struts.tiles.ComponentContext;

public static void listTileScope(PageContext context)
throws JspException, IOException {

JspWriter out = context.getOut();
ComponentContext compContext =

(ComponentContext)context.getAttribute(
ComponentConstants.COMPONENT_CONTEXT,
PageContext.REQUEST_SCOPE);

out.println("--- TILE Attributes ---
");

if (compContext!=null){

Iterator iter = compContext.getAttributeNames();
while(iter.hasNext()){

String name = (String)iter.next();
Object value = compContext.getAttribute(name);
printNameValueType(name, value, out);

}
}else{

out.println("---TILE Attributes NOT FOUND---
");
}

out.println("---------------------------
");

}

private static void printNameValueType(

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Master the Tiles framework Page 23 of 44

String name,
Object value,
JspWriter out)

throws IOException{

if (value !=null){

out.println(
name + " = " + value +
" type (" +

value.getClass().getName()+ ") " +
"

");

}else{
out.println(name + " = " + value +
"

");

}
}

Notice that the ComponentContext class implements the tile scope. The
ComponentContext class is located in request scope under the
ComponentConstants.COMPONENT_CONTEXT key. The tiles system ensures that
each tile gets its own component context.

Nested tiles do not share the same tile scope as their parent (I learned this one the
hard way). The current tile's tile scope is saved before displaying the nested tile. After
the nested tile finishes, the parent tile scope is restored into the request. This magic is
done in the InsertTag (org.apache.struts.taglib.tiles.InsertTag)
class's nested class InsertHandler.

Use bean attributes as parameters

So far you have passed attributes into the tile layout that corresponds to subtiles or
simple strings. You can pass in any bean type you want as attributes into the tile
layout. Then use that attribute inside of the tile layout.

Let's say your application has an action that puts a User object into session scope,
perhaps after the user logs into the system:

public ActionForward execute(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response)

throws IOException, ServletException {

// Default target to success
String target = new String("success");

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 24 of 44 Master the Tiles framework

// If login successful.
UserDomainObject user = new UserDomainObject();
...
request.getSession().setAttribute("user", user);
return (mapping.findForward(target));

}

Next you pass that user to a tile you are inserting. In this example, you will use the tile
you used inside your tile layout (siteLayout2.jsp):

<tiles:insert attribute="header" ignore="true">
<tiles:put name="title" beanName="title" beanScope="tile"/>
<tiles:put name="user" beanName="user"

beanScope="session"/>
</tiles:insert>

The tile layout passes the user bean to the header tile by specifying a scope of
session and a bean name of user. You can pass any bean from any JSP scope into
the tile or tile layout using this technique, thus the tile scope becomes just another
scope. That is not much different than before.

To use this user bean in header.jsp, copy it from tile scope into a scope that other
beans understand. You can do this using the tiles:useAttribute tag. The
tiles:useAttribute tag is analogous to the jsp:useBean action, except that it
works only with tile scope (header2.jsp):

<tiles:useAttribute id="user"
name="user"
classname="rickhightower.UserDomainObject"
/>

Thus tiles:useAttribute copies the user object from tile scope into page scope.
Once the bean is defined, you can start using it as you would with any bean defined in
page scope:

<bean:write name="user" property="userName"/>

Next, let's see the complete listing for the new header2.jsp file:

<%@ taglib uri="/WEB-INF/struts-tiles.tld" prefix="tiles" %>
<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>
<center>
<table>
<tr>

<tiles:useAttribute id="user"
name="user"
classname="rickhightower.UserDomainObject"
/>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Master the Tiles framework Page 25 of 44

<td width="33%" bgcolor="#36566E">

<div align='left'>

currently logged in as
<bean:write name="user" property="userName"/>

</div>

</td>

<td width="33%">

<tiles:getAsString name="title" ignore="true"/>

</td>
<td width="33%" bgcolor="#36566E">

<div align='left'>

<blockquote>

<bean:write name="user" property="firstName"/>

<bean:write name="user" property="lastName"/>

</blockquote>

</div>

</td>

</tr>

</table>

</center>

As you can see, the header now displays information about the current user logged into
the site -- a powerful feature. You can create tiles that specialize in displaying domain

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 26 of 44 Master the Tiles framework

objects, and then reuse those tiles in many parts of our application. Considering that,
it's easy to see why they originally considered calling the Tiles framework components:
You can, in effect, create display components. Unlike custom tags (pre JSP 2.0), these
components are all created in JSP pages.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Master the Tiles framework Page 27 of 44

Section 6. Lists

Understand lists

You frequently must pass more than one parameter. For example, you may want to
pass a list of parameters to display links in the navigation region of the tile layout.

Going back to the Employee Listing example, you may have a Web application that
displays a company's divisions, departments, and employees. When in the employee
listing view, employeeListing.jsp will be in the content region of the tile layout and the
current division's department links will be in the navigation region. When the user clicks
on a department link, a new listing of that department's employees will appear. When in
the department view, deptListing.jsp will be in the content region of the tile layout, and
the company's list of division links will be in the navigation region. When the user clicks
on a division link, a new listing of departments will appear. Thus, each page
(employeeListing.jsp and deptListing.jsp) will pass in a new list of links. You can
accomplish that with putList.

Use putList in XML

Tiles lets users pass in links using the putList subelement -- usable in XML and JSP
definitions or in calls to a definition or tile layout from a JSP.

Let's say you want a standard set of navigational links for your site layout. You can
specify such links with the putList subelement in your tiles configuration file as
follows (tiles-def.xml):

<definition name="siteLayoutDef3" path="/siteLayout3.jsp">
<put name="title" value="Rick Hightower Stock Quote System" />
<put name="header" value="/header2.jsp" />
<put name="footer" value="/footer.jsp" />
<put name="content" type="string">

Content goes here
</put>

<putList name="items" >
<item value="Home"

link="/index.html" />
<item value="Wiley"

link="http://www.wiley.com" />
<item value="Trivera Technologies"

link="http://www.triveratech.com/" />
<item value="Virtuas"

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 28 of 44 Master the Tiles framework

link="http://www.virtuas.com/" />
<item value="Rick Hightower"

link="http://www.rickhightower.com" />
<item value="Rick's Blog"

link="http://rickhightower.blogspot.com/" />
</putList>

</definition>

The putList element lets you specify a list of items associated with links. In the
above listing, putList defines six links.

The items list (java.util.List) gets put into tile scope. The name items is set
with the name attribute of the putList element.

The item element defines a link by putting an instance of
org.apache.struts.tiles.beans.MenuItem in the list. The value attribute
corresponds to the label on the link, while the link refers to the link's URL.

Icon and tool tip

The item element also has elements for specifying the tool tip and the icon for the link.
You can learn more about the item element and putList by looking at the DTD
(tiles-config_1_1.dtd), found in the Struts source.

Use the list in the tile layout

To use this list of links, you must modify the tile layout as follows (siteLayout3.jsp):

<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>
<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>
<%@ taglib uri="/WEB-INF/struts-tiles.tld" prefix="tiles" %>
<%@ taglib uri="/WEB-INF/struts-logic.tld" prefix="logic" %>

<tiles:importAttribute />

<html>
<head>
<logic:present name="title">

<title>
<tiles:getAsString name="title" ignore="true"/>
</title>

</logic:present>
</head>

<body>
<table width="500" border="0" cellspacing="0" cellpadding="0">

<tr bgcolor="#36566E">
<td height="68" width="70%">

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Master the Tiles framework Page 29 of 44

<div align="left">

</div>
</td>

</tr>

<tr>
<td height="68" width="2000">

<tiles:insert attribute="header" ignore="true">
<tiles:put name="title"

beanName="title" beanScope="tile"/>
<tiles:put name="user"

beanName="user" beanScope="session"/>
</tiles:insert>

</td>

</tr>

<table>
<tr>
<td width="50%">

<logic:iterate id="item" name="items"

type="org.apache.struts.tiles.beans.MenuItem" >

<bean:define id="link" name="item" property="link"
type="java.lang.String"/>

<logic:match name="link"
location="start" value="/" >

<html:link page="<%=link%>" >
<bean:write name="item"

property="value"/>
</html:link>

</logic:match>
<logic:notMatch name="link"

location="start" value="/" >
<html:link href="<%=link%>">

<bean:write name="item"
property="value"/>

</html:link>
</logic:notMatch>

</logic:iterate>

</td>
<td width="50%">

<div align="center">
<tiles:insert attribute="content"/>
</div>

</td>
</tr>
</table>

<tr>
<td>

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 30 of 44 Master the Tiles framework

<tiles:insert attribute="footer" ignore="true"/>
</td>

</tr>

</table>

</body>
</html>z

Pay particular attention to the code section that iterates over the list:

<logic:iterate id="item" name="items"

type="org.apache.struts.tiles.beans.MenuItem" >

<bean:define id="link" name="item" property="link"
type="java.lang.String"/>

<logic:match name="link"
location="start" value="/" >

<html:link page="<%=link%>" >
<bean:write name="item"

property="value"/>
</html:link>

</logic:match>
<logic:notMatch name="link"

location="start" value="/" >
<html:link href="<%=link%>">

<bean:write name="item"
property="value"/>

</html:link>
</logic:notMatch>

</logic:iterate>

Later you will simplify this.

Use tiles:importAttribute

The tiles:importAttribute tag imports the attributes in tile scope into page
scope. It resembles the tiles:useAttrribute tag, but it's closer to a shotgun than
a scalpel. It is lazy, dirty, and cheap; I use it all the time (what does this say about
me?). This effectively copies the items list from tile scope into page scope.

Note: tiles:importAttribute copies into any scope you specify.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Master the Tiles framework Page 31 of 44

By default, tiles:importAttribute copies all of the attributes into page scope.
You can copy the attributes into other scopes as well by using the scope attribute.

Once the items list is in page scope, you can access it with the standard Struts tags as
follows (siteLayout3.jsp):

<logic:iterate id="item" name="items"
type="org.apache.struts.tiles.beans.MenuItem" >

...
</logic:iterate>

Notice the logic you implement with the logic tag for displaying the link. You check to
see whether the link begins with "/" to determine if the link is relative. If the link is
relative, use the html:link tag's page attribute. Otherwise, use the html:link tag's
href attribute if the link refers to an absolute URL as follows (siteLayout3.jsp):

<bean:define id="link" name="item" property="link"
type="java.lang.String"/>

<logic:match name="link"
location="start" value="/" >

<html:link page="<%=link%>" >
<bean:write name="item"

property="value"/>
</html:link>

</logic:match>
<logic:notMatch name="link"

location="start" value="/" >
<html:link href="<%=link%>">

<bean:write name="item"
property="value"/>

</html:link>
</logic:notMatch>

As you can imagine, you may want to use this bit of display logic to display menu items
in more than one location. That is, you may want to reuse it outside of this page's
scope. In a later section you'll see how to do this by nesting one tile layout into another
tile layout.

Use putList in JSP

In addition to adding items to the list in the tile definition, you can add items to the list in
the JSP using the tiles:putList element and its tiles:add subelement
(index6.jsp):

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 32 of 44 Master the Tiles framework

<%@ taglib uri="/WEB-INF/struts-tiles.tld" prefix="tiles" %>

<%@ page import="org.apache.struts.tiles.beans.SimpleMenuItem" %>
<tiles:insert definition="siteLayoutDef4">

<tiles:put name="title" type="string"
value="Get Rick Hightower Stock Quote6" />

<tiles:put name="content" value="indexContent5.jsp"/>

<tiles:putList name="items" >
<jsp:useBean id="item1" class="SimpleMenuItem"/>
<jsp:setProperty name="item1" property="link"

value="/index.html"/>
<jsp:setProperty name="item1" property="value"

value="Home" />
<tiles:add beanName="item1"/>

</tiles:putList>
</tiles:insert>

The above listing uses jsp:useBean to create an instance of SimpleMenuItem.
Then it uses jsp:setProperty to set the link and value properties of the
SimpleMenuItem bean. Lastly, it adds this bean to the list using tiles:add.

In the above example, you add a SimpleMenuItem, which subclasses the MenuItem
that the tile layout uses. However, you can add any bean type.

Note: Adding any bean type in XML

To add any bean type in the tiles XML definition, use the putList's subelement bean.
The bean element takes an id and classtype. For simple types, you can use
putList's add subelement as well. See the tiles configuration DTD
(tiles-config_1_1.dtd) for more information.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Master the Tiles framework Page 33 of 44

Section 7. Advanced definition concepts

Extend definitions

Several JSP pages frequently use the same defaults parameters. Yet other pages use
the same tile layout but use different tile parameters. Instead of defining a completely
different definition, one definition can extend another definition. The extends attribute
lets one definition extend another.

Here's an example:

<definition name="siteLayoutDef3" path="/siteLayout3.jsp">
<put name="title" value="Rick Hightower Stock Quote System" />
<put name="header" value="/header2.jsp" />
<put name="footer" value="/footer.jsp" />
<put name="content" type="string">

Content goes here
</put>

<putList name="items" >
<item value="Home"

link="/index.html" />
<item value="Wiley"

link="http://www.wiley.com" />
<item value="Trivera Technologies"

link="http://www.triveratech.com/" />
<item value="Virtuas"

link="http://www.virtuas.com/" />
<item value="Rick Hightower"

link="http://www.rickhightower.com" />
<item value="Rick's Blog"

link="http://rickhightower.blogspot.com/" />
</putList>

</definition>

<definition name="siteLayoutDef4" extends="siteLayoutDef3">
<put name="title" value="Rick Hightower Quote Sub System" />
<putList name="items" >
<item value="Home"

link="/index.html" />
<item value="Wiley"

link="http://www.wiley.com" />
<item value="Trivera Technologies"

link="http://www.triveratech.com/" />
<item value="Virtuas"

link="http://www.virtuas.com/" />
</putList>
</definition>

<definition name="siteLayoutDef5" extends="siteLayoutDef4">
<putList name="items" >
</putList>

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 34 of 44 Master the Tiles framework

</definition>

<definition name="siteLayoutDef6" path="/siteLayout4.jsp"
extends="siteLayoutDef4">

</definition>

Notice that siteLayoutDef4 extends siteLayoutDef3, overrides the values of
title, and defines a shorter navigation list. It inherits all the other parameters from
siteLayoutDef4 that it overrode -- that is, header, footer, and content. Furthermore,
notice that siteLayoutDef5 extends siteLayout4, except it blanks out the list of
items. A definition inherits all of the attributes of its super definition and all of its super
definition's super definitions, ad infinitum.

In addition to overriding attributes, you can change the tile layout JSP. Look at
siteLayoutDef6 as it extends siteLayoutDef5 and specifies a new tile layout
(siteLayout4.jsp).

Nest tiles

One tile layout can insert another tile layout, and so on. In fact, you can create tile
layouts so small that they are not really templates per se. Instead, they become small
visual components more similar to custom tags instead of page templates.

Remember the logic you implemented for displaying a link. You checked to see if the
link begins with "/" to see if the link is relative or not and then displayed it correctly. If
you wanted to use that same routine in several places in your application, you would
create a visual component.

Create a visual component

A visual component is just another tile layout. Whether a tile layout is a visual
component instead of a template just depends on your viewpoint (the eye of the
beholder). The following tile layout defines a visual component for displaying a link
(linkLayout.jsp):

<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>
<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>
<%@ taglib uri="/WEB-INF/struts-tiles.tld" prefix="tiles" %>
<%@ taglib uri="/WEB-INF/struts-logic.tld" prefix="logic" %>

<tiles:useAttribute id="item"
name="item"
classname="org.apache.struts.tiles.beans.MenuItem"

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Master the Tiles framework Page 35 of 44

/>

<bean:define id="link" name="item" property="link"
type="java.lang.String"/>

<logic:match name="link" location="start" value="/" >
<html:link page="<%=link%>" >

<bean:write name="item" property="value"/>
</html:link>

</logic:match>
<logic:notMatch name="link" location="start" value="/" >

<html:link href="<%=link%>">
<bean:write name="item" property="value"/>
</html:link>

</logic:notMatch>

This approach, compared to JSP Custom tags, lets you use other custom tags. Also,
it's a document-centric JSP compared to a Java class like a Custom tag, which makes
using HTML tags and such easier.

Note: JSP 2.0 tag files

You can realize many of the advantages from tile layouts with JSP tag files available in
JSP 2.0 and later. If you use an older JSP version that does not support tag files, then
you can start using this technique now. However, as you'll soon see, the Tiles
framework, in my opinion, better separates the controller from the view.

Use a visual component

Once you define the visual component, you should create a definition for it, as follows:

<definition name="linkLayoutDef" path="/linkLayout.jsp">
</definition>

Now that you've defined the definition, you can use this visual component on any page
using the tiles:insert tag. You even use this visual component inside of another
tile. The following code example uses this visual component inside the tile layout you
define earlier (siteLayout4.jsp).

<td width="50%">

<logic:iterate id="item" name="items"

type="org.apache.struts.tiles.beans.MenuItem" >

<tiles:insert definition="linkLayoutDef">
<tiles:put name="item"

beanName="item"

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 36 of 44 Master the Tiles framework

beanScope="page"/>
</tiles:insert>

</logic:iterate>

</td>

...

The above code iterates over the list of items, then calls tiles:insert, passing the
current item to the visual component (linkLayoutDef) to display. The visual
component knows how to display a domain object (a menu item). Any time you see
yourself repeating the same JSP code lines over and over again, consider writing a
visual component using a tile layout.

Use a tile as a parameter to another tile

The previous example explicitly called the visual component you defined. What if the
tile layout you use varies based on several factors (whether the user is logged in or not,
whether the user is in a certain role, which part of the site you are on)? In that situation,
it would be nice to pass the tile as a parameter.

You can do so using the put element as follows (tiles-def.xml):

<definition name="link.layout.def" path="/linkLayout.jsp">
</definition>

<definition name="siteLayoutDef7" path="/siteLayout5.jsp" extends="siteLayoutDef4">
<put name="title" value="Rick Hightower Quote System 9" />
<putList name="items" >
</putList>
<put name="linkDisplay" value="link.layout.def"/>

</definition>

Notice that siteLayoutDef7's linkDisplay attribute's value equals
link.layout.def. Now inside your tile layout (siteLayout5.jsp) you specify the
linkDisplay attribute instead of specifically calling a particular tile layout definition:

<logic:iterate id="item" name="items"

type="org.apache.struts.tiles.beans.MenuItem">

<tiles:insert attribute="linkDisplay">
<tiles:put name="item"

beanName="item"
beanScope="page"/>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Master the Tiles framework Page 37 of 44

</tiles:insert>

</logic:iterate>

Thus your site layout does not know which visual component it is using. You can
programmatically switch how pieces of the layout display by switching which visual
component the site layout uses.

Tile controller

If you feel you are putting too much Java code into your tile layout or you have to put
the same Java code into every action that forwards to a page that uses a particular tile
layout, then you should use a tile controller. You can specify a controller class that gets
called before a tile is inserted using the controllerClass attribute:

<%@ taglib uri="/WEB-INF/struts-tiles.tld" prefix="tiles" %>

<tiles:insert definition="siteLayoutDef5"
controllerClass="rickhightower.SimpleController">

<tiles:put name="content" value="indexContent5.jsp" />
</tiles:insert>

The controller class resembles an action. In the controller, you can map model objects
into scope so that the tile can display the items.

To write a tile controller, you must do the following:

1. Create a class that implements org.apache.struts.tiles.Controller.

2. Implement the perform() method.

3. In the perform() method, do something with the model and map the results into
scope so the tile can use it.

The following listing shows a way to implement a controller
(rickhightower.SimpleController):

package rickhightower;

import java.io.IOException;

import javax.servlet.ServletContext;
import javax.servlet.ServletException;

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 38 of 44 Master the Tiles framework

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import org.apache.struts.tiles.ComponentContext;
import org.apache.struts.tiles.Controller;

import org.apache.struts.tiles.beans.MenuItem;
import org.apache.struts.tiles.beans.SimpleMenuItem;

import java.util.ArrayList;
import java.util.List;

/**
* @author rhightower
*/
public class SimpleController implements Controller{

private MenuItem createMenuItem(String label, String link){
SimpleMenuItem item = new SimpleMenuItem();
item.setLink(link);
item.setValue(label);
return item;

}

private List getLinks(){
List list = new ArrayList();

list.add(createMenuItem("Home",
"/index.html"));

list.add(createMenuItem("Rick's",
"http://www.rickhightower.com"));

list.add(createMenuItem("Trivera",
"http://www.triveratech.com"));

return list;

}
/* (non-Javadoc)
*
*/
public void perform(ComponentContext context,

HttpServletRequest request,
HttpServletResponse response,
ServletContext servletContext)

throws ServletException, IOException {
List items = (List)getLinks();
context.putAttribute("items",items);

}
}

Notice that the perform() method gets passed the component context. The
component context holds the tile scope's attributes. Putting things in the component
context puts them in the tile scope. In this simple example, you call getLinks, which
returns a simple MenuItems list you map into tile scope. A real world example would

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Master the Tiles framework Page 39 of 44

likely talk to the model -- perhaps a facade that communicates with a database to look
up links specific to the type of user logged into the system.

Note: Using an action as the controller.

You can instead use an action as the controller for the tile. To do this, you specify the
path of the action with the controllerUrl attribute.

Use a tile definition as an ActionForward

You may be unaware that when you installed the Tiles plug-in, it installed a custom
request processor that extends the way Struts handles ActionForward. Thus, you
can forward to a tile definition instead of a JSP page.

Let's say you have a definition defined like so:

<definition name="main.index" extends="siteLayoutDef7">

<put name="content" value="/indexContent.jsp"/>
</definition>

In your struts configuration file, you can define a forward that forwards to the
main.index definition instead of specifying a JSP page:

<action
path="/Lookup"
type="rickhightower.SimpleLookupAction"
name="lookupForm"
input="/index.jsp">

<forward name="success" path="/quote.jsp"/>
<!-- forward name="failure" path="/index.jsp"/ -->
<forward name="failure" path="main.index" />

</action>

Being able to forward to a definition proves a powerful tool for eliminating extraneous
logic from your JSPs. For example, if a user was logged in as a manager instead of a
regular user, you could forward that user to a definition that defined special parameter
tiles that only a manager could use.

The manager's definition could extend the regular user's definition. They could even
use the same tile layout if the tile layout used the insert tag with the ignore
attribute. The action would select the correct forward. You would not need to use a
logic:* tag at all.

Getting logic out of your JSP and into the controller is a step in the right direction and is

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 40 of 44 Master the Tiles framework

so much easier with the Tiles framework.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Master the Tiles framework Page 41 of 44

Section 8. Wrap-up and resources

Summary

If you are new to the Tiles framework and have worked through this tutorial, then you
are well on your way. In a relatively small timeframe, we covered:

• The Tiles framework and architecture

• How to build and use a tile layout as a site template

• How to use tile definitions both in XML and JSP

• How to move objects in and out of tile scope

• How to work with attributes lists

• How to nest tiles

• How to build and use tile layouts as small visual components

• How to subclass a definition

• How to create a controller for a tile

• How to use a tile as an ActionForward

The Tiles framework makes creating reusable pages and visual components easier.
Developers can build Web applications by assembling reusable tiles. You can use tiles
as templates or as visual components.

In some respects, the tile layout is like a display function. First you pass tile layout
parameters to use. The parameters can be simple strings, beans, or tiles. The
parameters become attributes to the tile and get stored in the tile's tile scope. For its
part, the tile scope resembles page scope, and is less general than request scope. The
tile scope lets the tile's user pass arguments (called attributes) to the tile.

Definitions let you define default parameters for tiles. Definitions can be defined in JSP
or XML. Definitions can extend other definitions similarly to how a class can extend
another class. Moreover, definitions can override parts of the definition it is extending.

The Tiles framework includes its own RequestProcessor to handle tile layouts as
ActionForwards. Thus you can forward to a tile definition instead of a JSP if you
install the Tiles plug-in.

If you are using Struts but not Tiles, then you are not fully benefiting from Struts and
likely repeat yourself unnecessarily. The Tiles framework makes creating reusable site
layouts and visual components feasible.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 42 of 44 Master the Tiles framework

Resources

• Download the source code used in this tutorial. Two versions are available: one with
jar files and one without jar files.

• If you want to use Tiles with Struts, download Struts 1.1, which includes the Tiles
framework.

• If you want to use Tiles standalone, visit the Tiles Web site for downloads and other
useful information.

• Download the latest version of Apache Tomcat at the official Tomcat Web site.

• Tomcat 5 has some pretty nifty additions. This article by Sing Li (developerWorks,
March 2003) covers one of them, servlet filtering, in detail.

• developerWorks hosts the following articles on Struts/Tiles:
• Malcolm Davis's "Struts, an open-source MVC implementation " (February 2001)

introduces Struts and shows how to manage complexity in large Web sites.

• Wellie Chao's "Struts and Tiles aid component-based development " (June 2002)
combines both Struts and Tiles to construct Web applications.

• In "Struttin' your stuff with WebSphere Studio Application Developer, Part 2: Tiles,"
(November 2002) David Carew shows how to use the Tiles templating framework
with Struts.

• "Integrating Struts, Tiles, and JavaServer Faces" (September 2003) combines the
power of all three technologies into one powerful package.

• "Architect Struts applications for Web services" (April 2003) brings the power of
MVC to Web services.

• David Carew's "Go-ForIt Chronicles, Part 19: Struttin' your stuff with WebSphere
Studio" (September 2002) tutorial will get you started building Struts-based
applications using the WebSphere Studio IDE.

• The author, Rick Hightower, also co-authored Mastering Jakarta Struts, 2nd
edition with James Goodwill (Wrox Press).

• Chuck Cavaness, author of Programming Jakarta Struts, excerpts this four-part
series on Tiles from his book.

• JavaWorld also offers a look at Tiles in "UI design with Struts and Tiles" by Prakash
Malani.

• You'll find hundreds of articles about every aspect of Java programming in the IBM
developerWorks Java technology zone.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Master the Tiles framework Page 43 of 44

j-tiles-source.zip
j-tiles-source.zip
j-tiles-source.zip
j-tiles-source.zip
j-tiles-source-nojar.zip
j-tiles-source-nojar.zip
j-tiles-source-nojar.zip
j-tiles-source-nojar.zip
http://jakarta.apache.org/struts/
http://jakarta.apache.org/struts/
http://www.lifl.fr/~dumoulin/tiles/
http://www.lifl.fr/~dumoulin/tiles/
http://www.lifl.fr/~dumoulin/tiles/
http://jakarta.apache.org/tomcat/index.html
http://jakarta.apache.org/tomcat/index.html
http://jakarta.apache.org/tomcat/index.html
http://jakarta.apache.org/tomcat/index.html
http://www-106.ibm.com/developerworks/java/library/j-tomcat2/
http://www-106.ibm.com/developerworks/java/library/j-tomcat2/
http://www-106.ibm.com/developerworks/ibm/library/j-struts/
http://www-106.ibm.com/developerworks/ibm/library/j-struts/
http://www-106.ibm.com/developerworks/ibm/library/j-struts/
http://www-106.ibm.com/developerworks/ibm/library/j-struts/
http://www-106.ibm.com/developerworks/ibm/library/j-struts/
http://www-106.ibm.com/developerworks/ibm/library/j-struts/
http://www-106.ibm.com/developerworks/java/library/j-strutstiles.html
http://www-106.ibm.com/developerworks/java/library/j-strutstiles.html
http://www-106.ibm.com/developerworks/java/library/j-strutstiles.html
http://www-106.ibm.com/developerworks/java/library/j-strutstiles.html
http://www-106.ibm.com/developerworks/java/library/j-strutstiles.html
http://www-106.ibm.com/developerworks/java/library/j-strutstiles.html
http://www-106.ibm.com/developerworks/java/library/j-strutstiles.html
http://www-106.ibm.com/developerworks/ibm/edu/i-dw-iextreme21-i.html
http://www-106.ibm.com/developerworks/ibm/edu/i-dw-iextreme21-i.html
http://www-106.ibm.com/developerworks/ibm/edu/i-dw-iextreme21-i.html
http://www-106.ibm.com/developerworks/ibm/edu/i-dw-iextreme21-i.html
http://www-106.ibm.com/developerworks/ibm/edu/i-dw-iextreme21-i.html
http://www-106.ibm.com/developerworks/ibm/edu/i-dw-iextreme21-i.html
http://www-106.ibm.com/developerworks/ibm/edu/i-dw-iextreme21-i.html
http://www-106.ibm.com/developerworks/ibm/edu/i-dw-iextreme21-i.html
http://www-106.ibm.com/developerworks/ibm/edu/i-dw-iextreme21-i.html
http://www-106.ibm.com/developerworks/ibm/edu/i-dw-iextreme21-i.html
http://www-106.ibm.com/developerworks/ibm/edu/i-dw-iextreme21-i.html
http://www-106.ibm.com/developerworks/ibm/edu/i-dw-iextreme21-i.html
http://www-106.ibm.com/developerworks/java/library/j-integrate/
http://www-106.ibm.com/developerworks/java/library/j-integrate/
http://www-106.ibm.com/developerworks/java/library/j-integrate/
http://www-106.ibm.com/developerworks/java/library/j-integrate/
http://www-106.ibm.com/developerworks/java/library/j-integrate/
http://www-106.ibm.com/developerworks/java/library/j-integrate/
http://www-106.ibm.com/developerworks/java/library/j-integrate/
http://www-106.ibm.com/developerworks/webservices/library/ws-arcstruts/
http://www-106.ibm.com/developerworks/webservices/library/ws-arcstruts/
http://www-106.ibm.com/developerworks/webservices/library/ws-arcstruts/
http://www-106.ibm.com/developerworks/webservices/library/ws-arcstruts/
http://www-106.ibm.com/developerworks/webservices/library/ws-arcstruts/
http://www-106.ibm.com/developerworks/webservices/library/ws-arcstruts/
http://www-106.ibm.com/developerworks/webservices/library/ws-arcstruts/
http://www-106.ibm.com/developerworks/ibm/edu/i-dw-iextreme19-i.html
http://www-106.ibm.com/developerworks/ibm/edu/i-dw-iextreme19-i.html
http://www-106.ibm.com/developerworks/ibm/edu/i-dw-iextreme19-i.html
http://www-106.ibm.com/developerworks/ibm/edu/i-dw-iextreme19-i.html
http://www-106.ibm.com/developerworks/ibm/edu/i-dw-iextreme19-i.html
http://www-106.ibm.com/developerworks/ibm/edu/i-dw-iextreme19-i.html
http://www-106.ibm.com/developerworks/ibm/edu/i-dw-iextreme19-i.html
http://www-106.ibm.com/developerworks/ibm/edu/i-dw-iextreme19-i.html
http://www-106.ibm.com/developerworks/ibm/edu/i-dw-iextreme19-i.html
http://www-106.ibm.com/developerworks/ibm/edu/i-dw-iextreme19-i.html
http://www-106.ibm.com/developerworks/ibm/edu/i-dw-iextreme19-i.html
http://www.amazon.com/exec/obidos/tg/detail/-/0471213020/qid=1068510647/sr=1-1/ref=sr_1_1/103-7573276-7692630?v=glance&s=books
http://www.amazon.com/exec/obidos/tg/detail/-/0471213020/qid=1068510647/sr=1-1/ref=sr_1_1/103-7573276-7692630?v=glance&s=books
http://www.amazon.com/exec/obidos/tg/detail/-/0471213020/qid=1068510647/sr=1-1/ref=sr_1_1/103-7573276-7692630?v=glance&s=books
http://www.amazon.com/exec/obidos/tg/detail/-/0471213020/qid=1068510647/sr=1-1/ref=sr_1_1/103-7573276-7692630?v=glance&s=books
http://www.amazon.com/exec/obidos/tg/detail/-/0471213020/qid=1068510647/sr=1-1/ref=sr_1_1/103-7573276-7692630?v=glance&s=books
http://www.onjava.com/pub/a/onjava/excerpt/progjakstruts_14/index1.html
http://www.onjava.com/pub/a/onjava/excerpt/progjakstruts_14/index1.html
http://www.onjava.com/pub/a/onjava/excerpt/progjakstruts_14/index1.html
http://www.onjava.com/pub/a/onjava/excerpt/progjakstruts_14/index1.html
http://www.javaworld.com/javaworld/jw-01-2002/jw-0104-tilestrut.html
http://www.javaworld.com/javaworld/jw-01-2002/jw-0104-tilestrut.html
http://www.javaworld.com/javaworld/jw-01-2002/jw-0104-tilestrut.html
http://www.javaworld.com/javaworld/jw-01-2002/jw-0104-tilestrut.html
http://www.javaworld.com/javaworld/jw-01-2002/jw-0104-tilestrut.html
http://www.javaworld.com/javaworld/jw-01-2002/jw-0104-tilestrut.html
http://www.javaworld.com/javaworld/jw-01-2002/jw-0104-tilestrut.html
http://www-106.ibm.com/developerworks/java/
http://www-106.ibm.com/developerworks/java/
http://www-106.ibm.com/developerworks/java/

Feedback

Please let us know whether this tutorial was helpful to you and how we could make it
better. We'd also like to hear about other tutorial topics you'd like to see covered.

For questions about the content of this tutorial, contact the author, Richard Hightower,
at rick_m_hightower@hotmail.com.

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

You can get the source code for the Toot-O-Matic at
www6.software.ibm.com/dl/devworks/dw-tootomatic-p. The tutorial Building tutorials with the
Toot-O-Matic demonstrates how to use the Toot-O-Matic to create your own tutorials.
developerWorks also hosts a forum devoted to the Toot-O-Matic; it's available at
www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11.
We'd love to know what you think about the tool.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 44 of 44 Master the Tiles framework

mailto:rick_m_hightower@hotmail.com
http://www6.software.ibm.com/dl/devworks/dw-tootomatic-p
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11

	Table of Contents
	Getting started
	What is this tutorial about?
	Who should take this tutorial?
	Software requirements and code installation
	About the author

	The Tiles framework and architecture
	Tiles framework
	Clarification of terms
	Tile layouts
	Default arguments
	A typical tile layout

	Tile layouts
	Build your first tile layout
	Sample application
	Step-by-step tile layout
	Create a tile layout
	Call other tiles (passing attributes)
	Complete listing of tile layout
	Use a tile layout

	Tile definitions
	Create a definition
	Create and use a JSP definition
	Use a JSP tile definition
	Create and use an XML definition
	Create an XML tile definition
	Use an XML tile definition

	Advanced Tile topics
	Understand and use tile scope
	Use bean attributes as parameters

	Lists
	Understand lists
	Use putList in XML
	Use the list in the tile layout
	Use tiles:importAttribute
	Use putList in JSP

	Advanced definition concepts
	Extend definitions
	Nest tiles
	Create a visual component
	Use a visual component
	Use a tile as a parameter to another tile
	Tile controller
	Use a tile definition as an ActionForward

	Wrap-up and resources
	Summary
	Resources
	Feedback

