Non-regular languages (Pumping Lemma)

How can we prove that a language L is not regular?

Prove that there is no DFA or NFA or RG that accepts \boldsymbol{L}

Difficulty: this is not easy to prove (since there is an infinite number of them)

Solution: use the Pumping Lemma !!!

The Pigeonhole Principle

4 pigeons

3 pigeonholes

n pigeons

The Pigeonhole Principle

- n pigeons
- m pigeonholes
 - n > m

There is a pigeonhole with at least 2 pigeons

The Pigeonhole Principle

and

DFAs

Consider a DFA with 4 states

Consider the walk of a "long" string: aaaab (length at least 4)

The state is repeated as a result of the pigeonhole principle

Consider the walk of a "long" string: aabb (length at least 4)

Due to the pigeonhole principle: A state is repeated in the walk of *aabb*

The state is repeated as a result of the pigeonhole principle

Costas Busch - RPI

In General: If $|w| \ge #$ states of DFA, by the pigeonhole principle, a state is repeated in the walk W

$|w| \ge \#$ states of DFA = m

The Pumping Lemma

Take an infinite regular language L(contains an infinite number of strings)

There exists a DFA that accepts L

Costas Busch - RPI

Take string $w \in L$ with $|w| \geq m$ (number of states of DFA)

then, at least one state is repeated in the walk of w

There could be many states repeated

Take q to be the first state repeated

One dimensional projection of walk w:

First

Second

We can write w = xyz

One dimensional projection of walk W: First Second

Costas Busch - RPI

Costas Busch - RPI

Observation: length $|y| \ge 1$

Since there is at least one transition in loop

We do not care about the form of string z.

z. may actually overlap with the paths of x and y

Additional string:The stringx zis accepted

In other words, we described:

The Pumping Lemma:

- Given a infinite regular language L
- there exists an integer m (critical length)
- for any string $w \in L$ with length $|w| \ge m$
- we can write w = x y z
- with $|x y| \le m$ and $|y| \ge 1$

• such that: $x y^i z \in L$ i = 0, 1, 2, ...

Fall 2019

Costas Busch - RPI

In the book:

Critical length m = Pumping length p

Applications

of

the Pumping Lemma

Observation:

Every language of finite size has to be regular

(we can easily construct an NFA

that accepts every string in the language)

Therefore, every non-regular language has to be of infinite size (contains an infinite number of strings) Suppose you want to prove that An infinite language L is not regular

1. Assume the opposite: L is regular

2. The pumping lemma should hold for L

3. Use the pumping lemma to obtain a contradiction

4. Therefore, L is not regular

Explanation of Step 3: How to get a contradiction

- 1. Let m be the critical length for L
- 2. Choose a particular string $w \in L$ which satisfies the length condition $|w| \ge m$

3. Write
$$w = xyz$$

4. Show that $w' = xy^i z \notin L$ for some $i \neq 1$

5. This gives a contradiction, since from pumping lemma $w' = xy^i z \in L$

Note: It suffices to show that only one string $w \in L$ gives a contradiction

You don't need to obtain contradiction for every $w \in L$

Example of Pumping Lemma application

Theorem: The language $L = \{a^n b^n : n \ge 0\}$ is not regular

Proof: Use the Pumping Lemma

 $L = \{a^{n}b^{n} : n \ge 0\}$

Assume for contradiction that L is a regular language

Since L is infinite we can apply the Pumping Lemma

$$L = \{a^n b^n : n \ge 0\}$$

Let m be the critical length for L

Pick a string w such that: $w \in L$ and length $|w| \ge m$

We pick
$$w = a^m b^m$$

From the Pumping Lemma:

we can write
$$w = a^{m}b^{m} = x y z$$

with lengths $|x y| \le m, |y| \ge 1$
 $w = xyz = a^{m}b^{m} = a...aa...ab...b$
 $x y z$

Thus:
$$y = a^k$$
, $1 \le k \le m$

Fall 2019

Costas Busch - RPI

$$x y z = a^m b^m$$
 $y = a^k$, $1 \le k \le m$

From the Pumping Lemma:

$$x y^{i} z \in L$$
$$i = 0, 1, 2, \dots$$

Thus: $x y^2 z \in L$

$$x y z = a^m b^m$$
 $y = a^k$, $1 \le k \le m$

From the Pumping Lemma: $x y^2 z \in L$

Thus: $a^{m+k}b^m \in L$

Costas Busch - RPI

 $a^{m+k}b^m \in L$ $k \geq 1$

BUT: $L = \{a^n b^n : n \ge 0\}$ $a^{m+k} b^m \notin L$

CONTRADICTION!!!

Therefore: Our assumption that L is a regular language is not true

Conclusion: L is not a regular language

END OF PROOF

Non-regular language $\{a^n b^n : n \ge 0\}$

