Non-regular languages

(Pumping Lemma)

Non-regular languages

$$
\left\{a^{n} b^{n}: n \geq 0\right\}
$$

$$
\left\{v v^{R}: v \in\{a, b\}^{*}\right\}
$$

Regular languages

$$
a * b
$$

$$
b^{*} c+a
$$

$$
b+c(a+b) *
$$

etc...

How can we prove that a language L is not regular?

Prove that there is no DFA or NFA or RG that accepts L

Difficulty: this is not easy to prove

(since there is an infinite number of them)
Solution: use the Pumping Lemma !!!

The Pigeonhole Principle

4 pigeons

3 pigeonholes

A pigeonhole mus \dagger

 contain at least two pigeons

n pigeons

The Pigeonhole Principle

n pigeons

m pigeonholes
$n>m$
There is a pigeonhole with at least 2 pigeons

The Pigeonhole Principle

and

DFAs

Consider a DFA with 4 states

Consider the walk of a "long" string: aaaab (length at least 4)

A state is repeated in the walk of aaaab

The state is repeated as a result of the pigeonhole principle

Walk of $a a a a b$

Pigeons: (walk states)

Are more than

Nests: (Automaton states)

Consider the walk of a "long" string: $a a b b$ (length at least 4)

Due to the pigeonhole principle:
A state is repeated in the walk of $a a b b$

The state is repeated as a result of the pigeonhole principle

Walk of $a a b b$
Pigeons:
(walk states)
Are more than

Nests:
(Automaton states)

(q3)
Automaton States
Repeated state

In General: If $|w| \geq \#$ states of DFA, by the pigeonhole principle, a state is repeated in the walk w

Arbitrary DFA

Repeated state

$|w| \geq \#$ states of DFA $=m$

Pigeons: (walk states) Are

The Pumping Lemma

Take an infinite regular language L

(contains an infinite number of strings)

There exists a DFA that accepts L

m
states

Take string $w \in L$ with $|w| \geq m$ (number of states of DFA)
then, at least one state is repeated in the walk of w

There could be many states repeated

Take q to be the first state repeated

One dimensional projection of walk w :
First Second
occurrence
occurrence

We can write $w=x y z$

One dimensional projection of walk w :

 Firs \daggerSecond
occurrence occurrence

In DFA: $\quad w=x y z$

contains only
first occurrence of q

Observation:
length $|x y| \leq m$ number of states
of DFA

Unique States

Since, in $x y$ no
state is repeated
x

Observation: \quad length $|y| \geq 1$

Since there is at least one transition in loop

We do not care about the form of string z.
z. may actually overlap with the paths of x and y

Additional string: The string $x z$ is accepted

Do not follow loop

Additional string:

The string $x y y z$ is accepted

Follow loop

2 times

Additional string: is accepted

In General:

The string $\quad x y^{i} z$ is accepted $i=0,1,2, \ldots$

Therefore:

$$
x y^{i} z \in L \quad i=0,1,2, \ldots
$$

Language accepted by the DFA

In other words, we described:

The Pumping Lemma !!!

The Pumping Lemma:

- Given a infinite regular language L
- there exists an integer m (critical length)
- for any string $w \in L$ with length $|w| \geq m$
- we can write $w=x y z$
- with $|x y| \leq m$ and $|y| \geq 1$ - such that: $x y^{i} z \in L$
$i=0,1,2, \ldots$
Fall 2019
Costas Busch - RPI

In the book:

Critical length $m=$ Pumping length p

Applications

of

the Pumping Lemma

Observation:

Every language of finite size has to be regular (we can easily construct an NFA that accepts every string in the language)

Therefore, every non-regular language has to be of infinite size
(contains an infinite number of strings)

Suppose you want to prove that An infinite language L is not regular

1. Assume the opposite: L is regular
2. The pumping lemma should hold for L
3. Use the pumping lemma to obtain a contradiction
4. Therefore, L is not regular

Explanation of Step 3: How to get a contradiction

1. Let m be the critical length for L
2. Choose a particular string $w \in L$ which satisfies the length condition $|w| \geq m$
3. Write $w=x y z$
4. Show that $\quad w^{\prime}=x y^{i} z \notin L \quad$ for some $i \neq 1$
5. This gives a contradiction, since from pumping lemma $\quad w^{\prime}=x y^{i} z \in L$

Note:

It suffices to show that only one string $w \in L$ gives a contradiction

You don't need to obtain contradiction for every $w \in L$

Example of Pumping Lemma application

Theorem:

The language $L=\left\{a^{n} b^{n}: n \geq 0\right\}$ is not regular

Proof: Use the Pumping Lemma

$$
L=\left\{a^{n} b^{n}: n \geq 0\right\}
$$

Assume for contradiction that L is a regular language

Since L is infinite we can apply the Pumping Lemma

$$
L=\left\{a^{n} b^{n}: n \geq 0\right\}
$$

Let m be the critical length for L

Pick a string w such that: $w \in L$

$$
\text { and length }|w| \geq m
$$

We pick $w=a^{m} b^{m}$

From the Pumping Lemma:

we can write $w=a^{m} b^{m}=x y z$
with lengths $|x y| \leq m,|y| \geq 1$

$$
\text { Thus: } y=a^{k}, \quad 1 \leq k \leq m
$$

$$
x y z=a^{m} b^{m} \quad y=a^{k}, \quad 1 \leq k \leq m
$$

From the Pumping Lemma: $x y^{i} z \in L$

$$
i=0,1,2, \ldots
$$

Thus: $x y^{2} z \in L$

$$
x y z=a^{m} b^{m} \quad y=a^{k}, \quad 1 \leq k \leq m
$$

From the Pumping Lemma: $x y^{2} z \in L$

$$
x y^{2} z=\overbrace{a \ldots . . a a \ldots a a \ldots . . . a a_{1 . . . a b \ldots b}^{m+k} \in L}^{m}
$$

Thus: $a^{m+k} b^{m} \in L$

$a^{m+k} b^{m} \in L$
 $k \geq 1$

BUT: $\quad L=\left\{a^{n} b^{n}: n \geq 0\right\}$

$$
a^{m+k} b^{m} \notin L
$$

CONTRADICTION!!!

Therefore: Our assumption that L

is a regular language is not true

Conclusion: L is not a regular language

END OF PROOF

Non-regular language $\quad\left\{a^{n} b^{n}: n \geq 0\right\}$

Regular languages

$$
L\left(a^{*} b^{*}\right)
$$

