
Course : Data Structure and File processing (901230)
Instructor : Dr. Jehad Q. Odeh Alkhalidi
Faculty of Information Technology

Al al-Bayt University

1. INTRODUCTION

· Throughout this course examples will be given in C++. Most of the time its non-object-oriented features will be used and only in the few problems that will have to be implemented as classes, its object-oriented features will be used.

· The language is only being used as a means of expressing the algorithms. It should be realized that implementation could be in any modern high level language as they all tend to have equivalent features.

· It should also be pointed out that in the examples concentration is on the algorithms and not the specific details required for execution. Thus the pre-processor directives and the variable declaratives will not be included in the examples except where necessary.

· As a C/C++ programmer , you are already familiar with data types like int, char, float etc. These are basic building blocks of a programming language. For real world programming problems, it would not be possible to use basic data types alone.

· For example consider the following C++ program which reads 5 integer numbers using cin and then print them out using cout.

	#include <iostream.h>

void main()

{

int a,b,c,d,e;

cin>>a>>b>>c>>d>>e;

cout<<a<<endl<<b<<endl<<c<<endl<<d<<endl<<e<<endl;

}

· Try extending this program to read 1000 integer numbers!! Obviously using separate names for 1000 variables and reading all of them using a cin similar to the above will not come to the mind of any programmer. This problem is easily handled using arrays.

	#include <iostream.h>

void main()

{

int a[1000],i;

for (i=0;i<10000;i++)

{

cin>>a[i];

}

for (i=0;i<10000;i++)

{

cout<<a[i]<<endl;

} }

	Program=Algorithms+data structures

2. C-DATA TYPES AND DATA STRUCTURE CLASSIFICATION

	Basic data types
Internal level: bits, bytes (8 bits) and Words (typically 32 bits)
Program level: char (signed/unsigned)
 float (signed/unsigned)
 double(signed/unsigned)
 int (signed/unsigned)
 short int (signed/unsigned)
 long int (signed/unsigned)
 pointers (short/far)
Data structures
Non-user defined (supported directly by C) arrays, enum, struct, union, files
User defined: stacks, queues, trees, linked lists, graphs, heaps, ...

3 ARRAYS

· A one dimensional array Allows a set of data of a specified type to be held in a structure where the individual elements can be accessed by referral to a common variable name and their element number.

 e.g.
 int month[12]; is a declarative specifying an array that

 can hold 12 integers.

· In C++ the element numbers are from 0 - 11.

· An individual integer can be referred to by its position: so that month[7] refers to the 8th element in the array. REMEMBER that the positions start at 0.

· Most compilers will initialize the elements to zero automatically (but

 always play on the safe side and do it yourself if necessary!).

· Values can be assigned to the elements either through the use of assignment statements or with input statements.

	e.g. val = 36;
 for(j=0;j<12;j++)
 { month[j] = val;
 val = val - 2;
 }

or for(j = 0; j < 12; j++)
 cin>>month[j];

· Summing the elements could be achieved with:

 sum = 0;
 for(j = 0; j < 12; j++)
 sum = sum + month[j];

· A double dimension array can be declared as :

 int sales[5][12]

· The above declaration defines an array with 5 rows and 12 columns.

· Input could be:

	for(i = 0; i < 5; i++)
 { cout<<"Input the monthly sales for salesperson "<<i+1<<endl;
 for(j = 0; j < 12; j++)
 { cout<<"Month "<<j+1;
 cin>>sales[i][j];
 }
 }

Adding all the columns could be:

	 int sumcol[12];
 for(j=0;j<12;j++)
 {
 sumcol[j] = 0;
 for (i=0;i<5;i++)
 sumcol[j] = sumcol[j] + sales[i][j];
 }

· Note that this routine puts the column sums into the array sumcol.

Searching for a target:

	int num[10], flag=0, target, i;

 cin>>target;
 for (i=0;i<10;i++)
{

if (nums[i] == target)

{flag = 1;break;}

}

if (flag == 1) cout<<"Target found";
 else cout<<"Target not found";

Shifting elements of an array to the right and putting the last element to the first position:

	#include<iostream.h>

void main()

{

int num[5],i,val;

for (i=0;i<5;i++) cin>>num[i];

val=num[4];

for (i=3;i>=0;i--)

num[i+1] = num[i];

num[0] =val;

for (i=0;i<5;i++) cout<<num[i]<<endl;

}

POINTERS AND POINTER VARIABLES

1. POINTERS

· Remember that a pointer variable contains an address. A pointer variable can be declared as follows:

	int *ptr;

· This declares ptr to be a (pointer) variable that can contain the address of an integer variable.

· In a statement block we might find:

	a = 23; /* Assigns the integer variable a, the value 23 */
ptr = &b; /* Assigns ptr the address of b *\
ptr = a; / The contents of the variable pointed by ptr

 becomes the value of a*\

· NOTE: This is a complicated way of saying b = a; !!!!

	c = *ptr; /* Assigns the value of the variable pointed by ptr (i.e. contents of b) to the variable c, (i.e. c becomes 23). */

cout<<c<<*ptr; /* prints c and contents of address ptr */
 /*prints 23,23 */

· Another example:

	int i,j,*p1,*p2;

 i = 5;
 p1 = &i;
 j = p1/2 + 10;
 p2 = p1;
 cout<<i<<j<<*p1<<*p2; /* prints 5,12,5,5 */

· In C++, pointer arithmetic is scaled. Consider the following program:

	int a,*ptr;

ptr=&a;

if &a is equal to 276314 then ptr+1 will contain 276314+sizeof(int)

2. POINTERS AND ARRAYS

Consider the following program:

	#include<iostream.h>

void main()

{

int a[10];

cout<<&a[0]<<endl;

cout<<a;

}

The two cout will have the same output because the name of an array is actually representing the address of element 0 of the array. What C++ does when we refer to the element a[i] is to get the data from a+i.

Therefore

	&a[i] is the same as a+i

a[i] is the same as *(a+i)

· The following program reads and prints using the above mentioned pointer equivalence.

	#include <stdio.h>

void main()

{

int a[5],i;

for (i=0;i<5;i++) scanf("%d",a+i);

for (i=0;i<5;i++) printf("%d\n",*(a+i));

}

· The case of two dimensional array is interesting. Every two dimensional array is stored in the memory row by row. From the row and column index (i and j), we can calculate exactly where an element a[i][j] is stored in the memory.

· In a 2-D array, the name of the array represent the address of the first row. Therefore, we must cast this to a pointer to the array type, to handle it easily. The we will get for a char array a (char*) a=&a[0]

· If we know the address of the first element, then given the index i and j of any element, we can find its address as i*maximum number of columns +j. This can be implemented as per the following program
	#include<iostream.h>

void main()

{

char a[4][3]={{'m','a','t'},{'s','a','t'},{'h','a','t'},{'c','a','t'}};

int i,j;

char c;

for (i=0;i<4;i++)

{

for (j=0;j<3;j++)

{

cout<<*((char*) a+i*3+j));

}

cout<<endl;

}

}

3. DYNAMIC MEMORY ALLOCATION

· Memory is allocated for variables in two ways:

· Static (or at compile-time)

· Dynamic (or at run-time)

· In a program which declares an integer variable x, at compile time itself, memory locations of size enough for an integer (2 locations since size of an integer is 2 bytes) is reserved for x.

· Arrays are also known as static data structures since they also get their required memory allocated during compile time. The problem with static memory allocation is that the memory usage may not be efficient.

· Consider the case of array marks to store the marks of a class of a maximum size 100. It is likely that in each semester the number of students may vary. In a given semester even if 25 students are there, 100 locations will still be reserved and 75 of them wasted.

· We can re-write the program each time with the array declaration exactly matching the number of students, but then the program is no longer a general one.

· Dynamic memory allocation is in contrast with this. Memory gets allocated at the time of running the program and hence we can use memory to exactly meet our needs.

· Allocated memory can be many types:

· Contiguous memory allocation: Allocation of adjacent memory locations

· Non-Contiguous memory allocation: Allocation of non adjacent memory locations

· Heap: Collection of all free memory locations available for allocation

· De-allocation: Releasing of allocated memory after use, to be added back to the heap.

· The new and delete operators do dynamic allocation and deallocation in much the same manner that the malloc() and free() functions do in C .

· During the design of C++, it was felt that since dynamic allocation and deallocation are such a heavily used part of the C programming language and would also be heavily used in C++, it should be a part of the language, rather than a library add-on.

· The new operator requires one modifier which must be a type.

· The delete operator can only be used to delete data allocated by a new operator. If the delete is used with any other kind of data, the operation is undefined and anything can happen.

· Here is a small program which dynamically allocates memory for an integer.

	#include<iostream.h>

void main()

{

int *p;

p=new int;

*p=56;

cout<<“Memory allocated at ”<<p<<endl;

cout<<“Integer in memory="<<*p<<endl;

}

· Below is another example using structures

	#include<iostream.h>

void main()

{

struct pair{

int x;

int y;

};

struct pair *p;

p= new pair;

(*p).x=56;

(*p).y=47;

cout<<p->x<<endl<<p->y;

}

· The brackets around *p is required to control the precedence between * and . operators. However this situation is so common that C++ has a short-hand notation for this.

	(*p).x is equivalent to p->x

(*p).y is equivalent to p->y

· Proper programming practice requires that all memory that is allocated to be freed after use (In the previous programs, when the program finishes running the operating system frees all memory allocated). See the following program.

	#include <iostream.h>

#include <string.h>

int main()

{

struct date

{

int month;

int day;

int year;

};

int index, *pt1,*pt2;

pt1 = &index;

*pt1 = 77;

pt2 = new int;

*pt2 = 173;

cout<<"The values are "<<index<<" " <<*pt1<<" "<<*pt2<<endl;

pt1 = new int;

pt2 = pt1;

*pt1 = 999;

cout<<"The values are "<<index<<" "<<*pt1<<" "<<*pt2<<endl;

delete pt1;

date *date_pt;

date_pt = new date;

date_pt->month = 10;

date_pt->day = 18;

date_pt->year = 1938;

cout<<date_pt->day<<"/"<<date_pt->month<<"/"<<date_pt->year<<endl;

delete date_pt;

char *c_pt;

c_pt = new char[37];

strcpy(c_pt,"John");

cout<<c_pt<<endl;

delete c_pt;

return 0;

}

<!-- saved from url=(0022)http://internet.e-mail --> STRUCTURES AND ABSTRACT DATA TYPES

1. STRUCTURES:

· Recall the way of declaring a structured type is:

	struct date {

int day;

int month;

int year; }

· This declares a data type that is a structure containing 3 integer fields.

	 struct date today, *pointer;

· This declares a variable today that can contain the 3 fields and a (pointer) variable that can contain the address of a structure of type date.

· We can assign values in different ways:

	 today.day = 27;
 today.month = 1;
 today.year = 1999;

 or
 pointer = &today;

 pointer->year = 1999;

Structures containing pointers:

	 struct node { int number, int *ptr; }

· Defines a structure type that contains an integer and an address.

	struct node record1, record2;
int a,b,c:

a = 10;
b = 15;
record1.number = a;
record1.ptr = &b;

2. ABSTRACT DATA TYPES

· So far we have only considered carrying out simple operations on primitive data types and structures. So for instance if we have defined a variable as being of type integer then we are able to carry out operations such as assigning it an integer value, using it in expressions, incrementing it and so on.

· We will find that with certain more complicated data types or structures we need and are able to carry out other operations and that in fact to define the type fully we will need to specify what operations can be carried out. The resulting definitions create what are called ABSTRACT DATA TYPES (ADT).

· So structures such as lists, stacks, queues and trees together with the set of operations that can be performed on them are called abstract data types.In C++ the concept of a class is ideally suited to define an ADT .

3. CLASSES

· Recall that as an example we might have a class as follows:

	#include <iostream.h>

class Patient

{public:

Patient();

void SetDetails (int,char);

void DisplayDetails();

private:

int IdNumber;

char Name;

};

· This specifies a class called Patient, that its structure consists of two data members IdNumber and Name and that the only operations that can be performed on such a structure (data type) are to be able to construct a member (object), to SetDetails and DisplayDetails. Thus we have an ADT called Patient.

We need to define the operations with:

	Patient::Patient()

{ cout << "Allocating memory" <<endl;}

void Patient::SetDetails (int IdNumberin, char Namein)

{
IdNumber = IdNumberin;

Name = Namein;

}

void Patient::DisplayDetails()

{
cout << IdNumber<<" "<<Name<<endl;}

· An example of its use is:

	void main()

{ Patient p1,p2;

p1.Setdetails(1111,'x');

p2.Setdetails (2222,'y');

p1.Displaydetails();

p2.Displaydetails();

}

 <!-- saved from url=(0022)http://internet.e-mail --> RECURSION, BACKTRACKING AND LOOK AHEAD.

1. RECURSION

1. A recursive function is a function that calls itself. Remember the way of finding the factorial of a number:

	Method 1 - non-recursive

 cin>>num;
 factnum = 1;
 for (i=2;i<=num;i++)
 factnum = factnum*i;

	Method 2 - recursive

 long factorial (long number)
 {
 if (number == 1) return 1;
 else
 return(number*factorial(number - 1));
 }

 main()
 {
 int factnum;

 cin>>num;
 factnum = factorial(num);

 cout<<factnum;
 return 0;
 }

· Every time the function is called new memory is allocated to the “local” variable number. Also the code for the function is loaded again. This means that if for instance we input num as 6 then at the “worst” stage there would be 6 copies of the function and 6 versions of the integer “number”.

2. BACKTRACKING

· Refers to a certain class of algorithm which attempts to complete a solution by constructing partial solutions and then to extend the partial solution toward completion. When an inconsistency occurs the algorithm 'backs up' by removing the most recent construction and trying another possibility (backtracking).

Example problem: In some languages it is not possible to determine the meaning of a statement until almost all of it has been read. Consider the FORTRAN statements:

	DO 17 K = 1,6
DO 17 K = 1.5

· On compilation such a statement needs to be parsed i.e. broken down into its constituent components.

· Thus we might commence to parse such a statement from left to write on the initial assumption that it is a loop only to find the decimal point (.) at which point we have to backtrack and try another possibility, namely that it is an assignment statement.

Example problem: Consider the 8 queens problem.

· A general description of the algorithm might be:

	void AddQueen(void)

 {
 for (every unguarded position p on the board)

 {
 Place a queen in position p;
 n ++;
 if (n == 8) Print the configuration;
 else
 Addqueen();
 Remove the queen from position p;
 n--;

 }

 }

· For a full implementation of the above algorithm see textbook page 106.

3. LOOK AHEAD

· In some games the advantage will always be with the player who can think several moves ahead.

· Thus this class of recursive algorithm involves a look ahead procedure which find-out possible future moves, evaluates them and then selects the best before carrying out the move.

A general description might be:

	Void LookAhead ()

{

 Obtain a stack of possible moves

 if recursion terminates (the base case) return one move and the value

 else

 {

 for each move on the stack do

 make the move and Lookahead

 select the best value

 return the move and value

 }

· Try to apply this to the game of 8. The game consists of a 3x3 board containing numbers from 1 to 8 put randomly. Therefore there is one space left for numbers to move. The aim of the game is to move the numbers to rearrange them in the following sequence:

1 2 3
4 5 6
7 8

· A number is moveable if it is adjacent to the empty square.

 <!-- saved from url=(0022)http://internet.e-mail --> STACKS AND QUEUES (ARRAY IMPLEMENTATION)

1. STACKS

· A stack is a sequence of items, which can be added and removed from one end only. Stack is a concept known to every one. We make stacks of books, plates and many other things.

· What goes into a stack first, comes out last and what goes in last comes out first. Hence a stack is often known as LAST-IN-FIRST-OUT (LIFO)

· A stack is very useful and popular data structure. It is used by the operating system and other system programs extensively. Whenever nested function calls are made, the programs keep track of the location to return to, by storing it in stacks. Complex arithmetic expressions can also be checked and calculated easily.

 e.g. Consider the following situation:

 - - - 31
 23 - 18 18
 45 45 45 45
 16 16 16 16
 37 37 37 37
 Remove (23) Add(18) Add(31)

· The processes for adding to and removing from a stack are called PUSHING and POPPING respectively.

 The allowable operations that define a structure as being a stack are:

 1. Create an empty stack
 2. Determine whether the stack is empty or not
 3. Determine whether the stack is full or not
 4. Find the size of the stack (how many items are in it)
 5. PUSH a new entry onto the top of the stack providing it is not full
 6. Copy the top entry from the stack providing it is not empty
 7. POP the entry off the top of the stack providing it is not empty
 8. Clear the stack to make it empty
 9. Traverse the stack performing a given operation on each entry

2. STACK IMPLEMENTATION

· A stack can be implemented easily using an arrays and a integer that holds the position of the top element.

· Consider the following: Element Value
 5 -
 4 -
 Here you need to imagine 3 23
 the memory elements are 2 45
 numbered from 0 to 5 upwards. 1 16
 0 37

Suppose the array is called “stack”. In addition we need something to point to the top of the stack (not a pointer variable). Suppose the pointer was called “topstack” then at the present moment topstack would have the value 3 as this is the element number that contains the value at the top of the stack.

· “topstack” should have the value –1 initially

· POPping from the stack means assigning the value at the top of the stack to another variable (?) and decrementing the stack pointer i.e.

	? = stack[topstack]
 topstack--

· PUSHing would require incrementing the stack pointer and putting an element onto the top of the stack i.e.

	topstack++
stack[topstack] = ?

3. DECLARING A STACK ADT

· It is better to incorporate the requisites for a stack into a single class:

	#include <iostream.h>

class ADTstack

{
int stack[10];

int topstack;

public: ADTstack(){topstack = -1;};

int empty(){if (topstack == -1) return 1; else return 0;};

int full(){if (topstack == 9) return 1; else return 0;};

void push(int num){if (!full()){ topstack++;

 stack[topstack] = num;

 }

 else cout<<" Stack is Full"<<endl;

 };

int pop(){int num; if (!empty()) {num = stack[topstack];

topstack--; return num;

}

 else {cout<<"Stack is Empty"<<endl; return 0;}

 };

};

void main()

{
ADTstack st;

st.push(23);

st.push(46);

st.push(37);

cout<<st.pop()<<endl;

cout<<st.pop()<<endl;

cout<<st.pop()<<endl;

cout<<st.pop()<<endl;

}

4. QUEUES
· A queue is a sequence of items, to which new items can be added at one end (tail) and only removed from the other end (head).

· Queues is a concept known to every one . We queue up in banks, shops and many other places. What goes into the queue first, comes out first and what goes in last comes out last. Hence a queue is often known as FIFO (FIRST-IN-FIRST-OUT).

· Whenever tasks are to be scheduled, queues are useful. Queues are very common in the everyday functions of computers. The most obvious is printing queues.

· When you send multiple print jobs to a printer, each printing job is inserted at the tail of the queue in the order it was sent. Processes waiting to be executed by a CPU are usually in a form of a queue.

· Consider the following queue:

 23 46 18 54
 Head Tail

Addition to the queue would result in:

 23 46 18 54 26
 Head Tail

Serving the queue would result in:

 46 18 54 26
 Head Tail

The operations that can be performed on a queue are:

1. Create an empty the queue leaving it empty
2. Determine whether the queue is empty or not
3. Determine whether the queue is full or not
4. Find the size of the queue (how many items are in it)
5. Append an entry to the tail of the queue providing it is not full
6. Retrieve (but do not remove) the front entry providing the queue is not empty
7. Serve (and remove) the front entry providing the queue is not empty
8. Clear the queue to make it empty
9. Traverse the queue performing some operation on each entry

5. QUEUE IMPLEMENTATION

· A Queue can be implemented easily using an arrays and two integers to indicate the position of the of the tail and the head of the queue.

· Consider the following:

 Element 0 1 2 3 4 5
 Value 23 46 18 54

· Suppose the array was called “queue”. We need a pointer to the head and a pointer to the tail. Suppose these were called “head” and “tail” respectively and that tail is initialized to –1 and head is initialized to 0.

· To append an element, means to go into element 4

	tail++
queue[tail] = ?

· To serve would mean removing the element from element 0

	? = queue[head]

 head++

· WARNING!! THIS QUEUE WOULD NOT LAST LONG!! : As the queue moves down, the storage space at the beginning of the array is discarded and never used again.

· A better implementation, but more expensive timewise, would be to move all the elements up one when one has been served. In this way the head would always be in element 0.

· Appending is still as before but serving would be

	 ? = queue[head]
 for(i=0;i<tail;i++)
 queue[i] = queue[i+1]

6. DECLARING A QUEUE ADT

· Again it is best to incorporate all the requisites for a queue into a class.

	#include<iostream.h>

class ADTqueue

{ private : int queue[10];

int head,tail;

public : ADTqueue() { tail = -1;head=0;}

int full()

{if (tail==9) return 1; else return 0;}

int empty()

{ if (head==tail+1) return 1; else return 0;}

void append(int num)

{

if (!full()) {tail++;queue[tail]=num;}

else cout<<" Queue is Full"<<endl;

}

int serve()

{

if (!empty())

{int num;

num=queue[head];

head++;

return num;}

else {cout<<"Queue is Empty"<<endl; return 0;}

}

};

void main()

{
ADTqueue q;

q.append(23);

q.append(46);

q.append(37);

cout<<q.serve()<<endl;

cout<<q.serve()<<endl;

cout<<q.serve()<<endl;

cout<<q.serve()<<endl;

}

LISTS AND LINKED LISTS

1. INTRODUCTION

· A list is a sequence of elements. More formally, a list of items of type T is a finite sequence of elements of the set T.

· We might have a list of integers or something more complicated such
as a list of records. The operations that can be performed on a list are:

1. Create the list, leaving it empty
2. Determine whether the list is empty or not
3. Determine whether the list is full or not
4. Find the size of the list
5. Add a new entry at the end of the list
6. Insert a new entry in a particular position in the list
7. Delete an entry from the list
8. Traverse the list performing a given operation on each entry
9. Clear the list to make it empty

2 IMPLEMENTATION OF LISTS

There are two main ways of implementing lists:

1. Using contiguous storage (i.e. an array in which the elements are
 physically next to one another in adjacent memory locations) and
2. As a linked list.

· The problems with contiguous storage implementation have been discussed before. These include:

i) Inserting in position requires moving elements 'down' one position.

ii) Deletion requires moving elements 'up' one position

· Linked implementation avoids the above problems.

3. WHAT DOES A LINKED LIST LOOK LIKE?

· A linked list is a collection of nodes, where each node contains some data along with information about the next node.

· A linked list uses non-contiguous memory locations and hence requires each node to remember where the next node is , if we are to handle all the nodes of the linked list.

· With a linked list, in addition to storing the data itself, we need to store a link (pointer) to the next element of the list. This link could be either an index to an array element (for array implementation) or a pointer variable containing the address of the next element. Such a combination of data and link is called a NODE of the list.

· The above linked list contains 3 nodes located at different memory locations each node has a pointer that points to the next node. The node that have a NULL indicates the end of the list (last node).

· In C/C++ programs either NULL or 0 can be used to indicate the end of the list

4 ARRAY IMPLEMENTATION OF A LINKED LIST

· Memory needs to be allocated to both the elements of the list and the links.Consider the simple case when the elements are just integers then we might declare the following:

	int data[10];

int link[10];

· We can now store a list of up to 10 elements and their links i.e. 10 nodes.

· Before we even consider programming let us imagine what the arrays might look like when holding just 4 nodes and the elements are in ascending numerical order:

 index data link

	PRIVATE
0
	35
	3

	1
	54
	2

	2
	86
	99

	3
	48
	1

· For the first node, the data is 35 and the link is 3 meaning that the next node is located in element 3 of the array. So taking 0 as the start of the list and 99 as a dummy representing the end of the list if you follow the links you will get the sequence 35,48,54,86.

· A simple program section to output the values of the list might be:

	int i = 0;

do

{

cout<<data[i];

i= link[i];

}

while (i!= 99)

· So far this just looks a much more complicated way of storing a sequence in a simple array but watch!

· To insert the value 38 in the list does not require us to move all the elements down. We can place 38 at the end of the list and modify the links as follows:

	PRIVATE
0
	35
	4

	1
	54
	2

	2
	86
	99

	3
	48
	1

	4
	38
	3

· So again, if you start at 0 and follow the links you will get the sequence 35,38,48,54,86.

· This has been accomplished by adding the new node at the end of the array and modifying just one link. This is much more efficient than moving the majority of the elements down one position.

· Removing 54 from the list, which has as its link the value 2, just means replacing the link to this node (i.e 1) with this value.

	PRIVATE
0
	35
	4

	1
	54
	2

	2
	86
	99

	3
	48
	2

	4
	38
	3

· So now, starting at 0 and following the links you would get 35,38,48,86.

· The above notes do not contain functions to insert and delete but are intended to provide you with the concept of array implementation of a linked list.

6 POINTER VARIABLE IMPLEMENTATION

· Consider the following:

	struct element

 {

int number;

int *next;

};

· This would appear to define a structure that consists of an integer and a pointer. It DOES, but the pointer can only point to an integer, not to a structure. The pointer must be able to point to the element structure.

· Thus we need :

	struct node

{

int data;

node *next;

};

· Now we have a structure that can contain an integer and a pointer that
can point to any variable of type “node”.

· In the following program block we created a linked list by adding elements to the front of the list.

	node *head,*temp;

int i,x;

head = new node; //create the head node

cin>>x;

head->data = x;

head->next = null;

//creating a linked list of 5 nodes

for (i=0;i<4;i++)

{

temp = new node;

cin>>x;

temp>data = x;

temp->next = head;

head = temp;

};

· We end up with a linked list where “head” is pointing to the first node and the last node having the “next” pointer equal to NULL.

· Printing out the contents could be accomplished with:

	temp = head;

while (temp != NULL)
{

cout<<temp->data; temp= temp->next;
 }

· The full the program could be:

	//Program illustrating the creation of a linked // list by adding elements to the front

#include <iostream.h>

#include <conio.h>

void main ()

{

clrscr();

struct node

{

int data;

node *next;

};

node *head,*temp;

int i,x;

//Creating a the first node

head = new node;

cout<<"data ";

cin>>x;

head->data=x;

head->next=NULL;

for (i=0;i<4;i++)

{

temp=new node;

cout<<"data ";

cin>>x;

temp->data=x ;

temp->next=head;

head=temp;

};

//Printing out the linked list

temp=head;

while (temp!=NULL)

{

cout<<temp->data<<endl;

temp=temp->next;

};

}

· Earlier we saw how to create a linked list by adding new nodes to the front of the list. Instead let us add new nodes to the end of the list.

· The only change is when we create a new node we make its pointer to the next element NULL (i.e. making it the end of the list) and making sure that the previous element points to the new one.

	//Program illustrating the creation of a //linked list by adding element

//at the end Sol 1

#include <iostream.h>

#include <conio.h>

void main ()

{

clrscr();

struct node

{

int data;

node *next;

};

node *head,*temp,*tail;

int i,x;

//Creating a the first node

head = new node;

cout<<"data ";

cin>>x;

head->data=x;

head->next=NULL;

tail=head;

for (i=0;i<4;i++)

{

temp=new node;

cout<<"data ";

cin>>x;

temp->data=x ;

temp->next=NULL;

tail->next=temp;

tail=temp;

};

//Printing out the linked list

temp=head;

while (temp!=NULL)

{

cout<<temp->data<<endl;

temp=temp->next;

};

}

· Another solution to adding nodes to the end of the list would be:

	//Program illustrating the creation of a //linked list by adding element

//to the end sol 2

#include <iostream.h>

#include <conio.h>

void main ()

{

clrscr();

struct node

{

int data;

node *next;

};

node *head,*temp;

int i,x;

//Creating a the first node

head = new node;

cout<<"data: ";

cin>>x;

head->data=x;

head->nex=NULL;

temp=head;

for (i=0;i<4;i++)

{

temp->next=new node;

temp=temp->next;

cout<<"data: ";

cin>>x;

temp->data=x ;

temp->next=NULL;

}

//Printing out the linked list

temp=head;

while (temp!=NULL)

{

cout<<temp->data<<endl;

temp=temp->next;

};

}

8. INSERTION AND DELETION

· There are two main operations which are required to maintain data in a linked list: insertion and deletion. While creating a linked list, we were always inserting data either at the end or at the beginning of the list.

8.1 Deletion

· If we need to insert an element between existing nodes, this needs to be done in a special way. Similarly, deletion also has to be handled separately. Once you are familiar with both of these, you can attempt to create a sorted list.

· Let us consider the following linked list , suppose we want to delete the node with data 48 (temp). We have first to consider its previous and succeeding node. Then, the idea of deletion would be simple if we make the node with data 38 (prev) points to the node with data 54, we will in effect exclude the node 48. Therefore , we have done the following:

	prev->next=temp->next

· The node with data 48 will still be in the memory, but it is out of the list, we can use delete to des-allocate it

· The first task in the deletion program is to locate the previous node of the node to be deleted.

	node *head,*temp,*prev;

temp=head;

while ((temp!=NULL)&&(temp->data!=48))

{

prev=temp;

temp=temp->next;

}

· Then we can delete it with the following instruction

	if (temp!=NULL)

{prev->next=temp->next; delete temp;}

· The condition temp!=NULL is done to make sure that the node to be deleted exist in the list

· The full program to delete a node is as follows:

	//Program illustrating the deletion of a node from // a linked list

#include <iostream.h>

#include <conio.h>

void main ()

{

clrscr();

struct node

{

int data;

node *next;

};

node *head,*temp,*prev;

int i,x,y;

//Creating a the first node

head = new node;

cout<<"data: ";

cin>>x;

head->data=x;

head->next=NULL;

temp=head;

for (i=0;i<4;i++)

{

temp->next=new node;

temp=temp->next;

cout<<"data: ";

cin>>x;

temp->data=x ;

temp->next=NULL;

}

cout<<"Enter data to be deleted:";

cin>>y;

temp=head;

while((temp!=NULL)&&(temp->data!=y))

{

prev=temp;

temp=temp->next;

}

if (temp!=NULL) {prev->next=temp->next;

delete temp;

}

//Printing out the linked list

cout<<"The list elements are:"<<endl;

temp=head;

while (temp!=NULL)

{

cout<<temp->data<<endl;

temp=temp->next;

};

}

8.2 Insertion

· Insertion can be specified as before or after a node which has specific data. For example let us consider the case the linked list below:

· Suppose we want to insert a node with data 40 before the node with data 48 and after the node 38.

· The next node of 38 (prev) is 48 (temp). This should become 40 (ins), and to maintain the continuity, the next node of the inserted node (40) should be 48.

· This can be done syntactically as follows:

	ins>next=temp;

prev->next=ins;

· Here is a full program to insert a node in a list

	//Program illustrating the insertion of node to a linked // list

#include <iostream.h>

#include <conio.h>

void main ()

{

clrscr();

struct node

{

int data;

node *next;

};

node *head,*temp,*prev,*ins;

int i,x,y,z;

//Creating a the first node

head = new node;

cout<<"data: ";

cin>>x;

head->data=x;

head->next=NULL;

temp=head;

for (i=0;i<4;i++)

{

temp->next=new node;

temp=temp->next;

cout<<"data: ";

cin>>x;

temp->data=x ;

temp->next=NULL;

}

cout<<"Enter data to be inserted:";

cin>>y;

cout<<"Enter data in the node before which new node is to be inserted:";

cin>>z;

temp=head;

while((temp!=NULL)&&(temp->data!=z))

{

prev=temp;

temp=temp->next;

}

if (temp!=NULL)

{

ins=new node;

ins->data=y;

ins->next=temp;

prev->next=ins;

}

//Printing out the linked list

cout<<"The list elements are:"<<endl;

temp=head;

while (temp!=NULL)

{

cout<<temp->data<<endl;

temp=temp->next;

};

}

8.3 The special case of the head node

· Suppose we want to delete the head node or we want to insert a new node before the head node. There are two special things about the head node. The head node once assigned is usually not changed. Also for the head node there is no previous node. Hence the case of the head node need to be handled especially

· For deleting the head node, we simply copy the contents of the second node to the head node.

	temp=head;

head=head->next;

delete temp;

· For inserting before the head node, we first create a temp node in which we copy the head node data. Then we write the new data into the head node and insert the temp node after the head node. If the data to be inserted is x , then we will have:

	temp=new node;

temp->data=x;

temp->next=head;

head=temp;

8. DOUBLY LINKED LIST
· A linked list where the nodes only contain one link is actually called a singly linked list. With such a list you can only traverse in one direction.

· To be able to traverse in both directions requires a doubly linked list.

 Pictorially it would look as follows:

· Now you can set up a structure for a doubly linked list that could be traversed in both directions.

<!-- saved from url=(0022)http://internet.e-mail -->
LINKED STACKS AND QUEUES

· In previous lectures we saw how to implement stacks and queues
using arrays. Now we will implement them using linked lists

8.1 LINKED STACKS

· Let us first define a structure for an element of the stack:

	struct node

{

int data;

 node *next;

} ;
node *temp,*top;

· As with the entries of contiguous stacks, we shall push and pop nodes from one end of a linked stack, called its top.

· If we have an item that we wish to push onto a linked stack, we must first create a new node and put this item into the node, and then push the node onto the stack.

· The first question to settle is to determine whether the beginning or the end of the linked structure will be the top of the stack.

· At first glance it may appear that (as for contiguous stacks) it may be easier to add a node at the end, but this method makes popping the stack difficult

· There is no quick way to find the node immediately before a given one in a linked structure, since the pointers stored in the structure give only one-way directions. Thus after we remove the last element, finding the element now at the end of the linked structure might require tracing all the way from its head.

· To pop out linked stack, it is much better to make all addition and deletion at the beginning of the structure. Hence the top of the stack will always be the first node of the linked structure.

· Let us now consider how to push an element into the linked stack. Initially top needs to be initialized to NULL. The method below considers two situations: the case were the linked stack in empty and the case where it already has some elements

	void push(int num)

{

node *temp;

temp=new node;

temp->data=num;

if (top==NULL)

{

top=temp;

temp->next=NULL;

}

else

{

temp->next=top;

top=temp;

}

}

· Now let us consider popping elements from the linked stack

	int empty()

{if (top==NULL) return 1; else return 0;}

int pop()

{

int num;

node *temp;

if (!empty())

{

num = top->data;

temp=top;

top=top->next;

delete temp;

return num;

}

else {cout<<"Stack is Empty"<<endl; return 0;}

}

};

· The full program to handle a linked stack is as follows:

	#include <iostream.h>

#include <conio.h>

struct node

{

int data;

node *next;

};

class ADTstack

{

node *top;

public: ADTstack(){top =NULL;};

int empty(){if (top==NULL) return 1; else return 0;};

void push(int num)

{

node *temp;

temp=new node;

temp->data=num;

if (top==NULL)

{

top=temp;

temp->next=NULL;

}

else

{

temp->next=top;

top=temp;

}

}

int pop()

{

int num;

node *temp;

if (!empty())

{

num = top->data;

temp=top;

top=top->next;

delete temp;

return num;

}

else {cout<<"Stack is Empty"<<endl; return 0;}

}

};

void main()

{

ADTstack st;

clrscr();

st.push(23);

st.push(46);

st.push(37);

cout<<st.pop()<<endl;

cout<<st.pop()<<endl;

cout<<st.pop()<<endl;

cout<<st.pop()<<endl;

}

· Below is a picture of who the linked stack looks like after the first three push operations.

8.2 LINKED QUEUES

· In contiguous storage, queues were significantly harder to manipulate than were stacks, and even somewhat harder than simple lists, because it was necessary to treat straight-line storage as though it was arranged in a circle, and the extreme cases of full queues and empty queues caused difficulties.

· It is for queues that linked storage really comes into its own. Linked queues are just as easy to handle as are linked stacks. We need only keep tow pointers head and tail, that will point respectively to the beginning and the end of the queue.

· The following code shows how to append an element to the linked queue. The method considers two cases: The case where the linked queue is empty and the case were it already has some elements

	void append(int num)

{

node *temp;

temp=new node;

temp->data=num;

temp->next=null;

if (tail==null)

{

head=temp;

tail=temp;

}

else

{

tail->next=temp;

tail=temp;

}

· The code below serves elements in the linked queue
	int empty()

{ if (tail==NULL) return 1; else return 0;}

int serve()

{

node *temp;

if (!empty())

{

int num;

num=head->data;;

temp=head;

head=head->next;

delete temp;

if (head==NULL) tail=NULL;

return num;

}

· The full program for handling a linked queue is as follows:
	#include<iostream.h>

#include <conio.h>

struct node

{

int data;

node *next;

};

class ADTqueue

{

node *head,*tail;

public : ADTqueue() {head=NULL;tail=NULL;}

int empty()

{ if (tail==NULL) return 1; else return 0;}

void append(int num)

{

node *temp;

temp=new node;

temp->data=num;

temp->next=NULL;

if (tail==NULL)

{

head=temp;

tail=temp;

}

else

{

tail->next=temp;

tail=temp;

}

}

int serve()

{

node *temp;

if (!empty())

{

int num;

num=head->data;;

temp=head;

head=head->next;

delete temp;

if (head==NULL) tail=NULL;

return num;

}

else {cout<<"Queue is Empty"<<endl; return 0;}

}

};

void main()

{

clrscr();

ADTqueue q;

q.append(23);

q.append(46);

q.append(37);

cout<<q.serve()<<endl;

cout<<q.serve()<<endl;

cout<<q.serve()<<endl;

cout<<q.serve()<<endl;

}

· The figure below shows the result of executing the first 3 append operations

INSERTION SORT AND SHELL SORT

1.SORTING

· Sorting is the problem of obtaining and maintaining a file of records in some sort of order.

· If the record key is numeric then the order is likely to need to be in numerically ascending order

· For example employee works number, product code, international standard book code (ISBN).

· If the record key is alphabetic then the order is likely to be alphabetic. e.g. Customer Name, Product Name.

· If the record key is alphanumeric then the order is likely to be alphanumeric (and depend on the computer representation of characters) e.g. Car number plates.

· Normally, in practice, we would be having to sort full records but in the classroom we will only consider record keys. (The identifier of a record).

· There are many algorithms for sorting, some simple but perhaps inefficient others complicated but efficient.

· We will look at seven algorithms for sorting

2. INSERTION SORT

· This is the way that most people sort playing cards, particularly clear if they are picked up one by one and put in place.

· The program for insertion sort is as follows:

	#include <iostream.h>

#include <conio.h>

#define MAX 5

void main()

{

int A[MAX],i,j,current;

clrscr();

cout<<"Enter "<<MAX<<" elements to be sorted:"<<endl;

for (i=0;i<MAX;i++) cin>>A[i];

for (i=1;i<MAX;i++)

{

current= A[i];

j=i;

while ((j>0)&&(current<A[j-1]))

 {

 A[j]= A[j-1];

 j--;

 A[j]= current;

}

}

cout<<"The elements after Insertion Sort"<<endl;

for (i=0;i<MAX;i++)

cout<<A[i]<<endl;

}

3. SHELL SORT

· This sort, designed by Shell, is an improvement on the insertion sort.

 One of the drawbacks to the insertion sort is that on looking for the

 position to insert an element the existing elements are only moved

 ONE position. If somehow we could arrange to exchange elements

 that were further apart then the algorithm would be more efficient.

· Consider 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2

· The insertion sort would start with the 28, move the 30 and insert it.

 Now to the 26, slot the 30 one right, then the 28 one right and insert

 26, ect. The elements are only being moved one position at a time.

· Shellsort does this: Find an appropriate increment size (e.g. n/3 + 1)

· Now do insertion sort on the elements separated by this increment.

· In the above example since size=15 then increment=6, then we do

insertion sort on: 30 18 6 giving 6 18 30

 28 16 4 giving 4 16 28

 26 14 2 giving 2 14 26

 24 12 giving 12 24

 22 10 giving 10 22

 20 8 giving 8 20

· So the array now looks like this:

6 4 2 12 10 8 18 16 14 24 22 20 30 28 26

· Now do the same with an increment of 3, so we do insertion as follows:

6 12 18 24 30 giving 6 12 18 24 30 (no changes)

4 10 16 22 28 giving 4 10 16 22 28 (no changes)

2 8 14 20 26 giving 2 8 14 20 26 (no changes)

· So the array will remain unchanged and looks like this

6 4 2 12 10 8 18 16 14 24 22 20 30 28 26

· A further insertion sort on this array can now be carried out with

 an increment of 2 as follows:

6 2 10 18 14 22 30 26 giving 2 6 10 14 18 22 26 30

4 12 8 16 24 20 28 giving 4 8 12 16 20 24 28

· So the array now looks like this:

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

· A further insertion sort on this array can now be carried out with an increment of 1 without changing it as it is already sorted

	#include <iostream.h>

#include <conio.h>

#define MAX 5

//A modified version of the Insertion sort: List start with start instead of 0

// and the increment between successive values is as given instead of 1

void SortInterval(int start,int increment,int a[])

{

int i,j,current;

i=start+increment;

while (i<MAX)

{

current=a[i];

j=i;

while ((j>start) && (current<a[j-increment]))

 {

 a[j]=a[j-increment];

 j=j-increment;

 a[j]= current;

}

i=i+increment;

}

}

void main()

{

int A[MAX],i,increment,start;

clrscr();

cout<<"Enter "<<MAX<<" elements to be sorted:"<<endl;

for (i=0;i<MAX;i++) cin>>A[i];

increment=MAX;

do

{

increment=increment/3+1;

for (start=0;start<increment;start++)

SortInterval(start,increment,A);

}

while (increment>1);

cout<<"The elements after Shell Sort"<<endl;

for (i=0;i<MAX;i++)

cout<<A[i]<<endl;

}

 SELECTION SORT AND BUBBLE SORT

1. SELECTION SORT

· The approach is rather different to the insertion sort in the sense that you are "selecting" an element to put into a particular position.

· A description might be: Starting from position 0, find the smallest and then exchange it with the element in position 0.Now, starting from position 1, find the smallest and exchange with position 1. Now from 2 etc. etc.

· A slightly more formal description might be:

	for positions i = 0 to max-1

find smallest from position i

exchange with position i

· Expanding the above might give the following program:

	#include <iostream.h>

#include <conio.h>

#define MAX 5

int Min(int a[], int pos)

{

int i,m,index=pos;

m=a[pos];

for (i=pos+1;i<MAX;i++)

if (a[i]<m) {m=a[i];index=i;}

return index;

}

void main()

{

int A[MAX],i,temp,k;

clrscr();

cout<<"Enter "<<MAX<<" elements to be sorted:"<<endl;

for (i=0;i<MAX;i++) cin>>A[i];

for (i=0;i<MAX;i++)

{

k=Min(A,i);

if (A[k]<A[i])

{

temp=A[k];

A[k]=A[i];

A[i]=temp;

}

}

cout<<"The elements after Selection Sort"<<endl;

for (i=0;i<MAX;i++)

cout<<A[i]<<endl;

}

2. BUBBLE SORT

· Sometimes also called the 'Mickey Mouse' sort, this algorithm is very simple but inefficient.

· It works by comparing neighbours in the array and exchanging them if necessary to put the smaller of the pair first. On each pass through the array another element 'bubbles' up into place.

· In its crudest form the algorithm is:

	for (i=0;i<max;i++)

for (j=0;j<max-1;j++)

if (a[j]>a[j+1])

{

save = a[j]

a[j] = a[j+1]

a[j+1] = save

}

· (You might actually consider the largest is sinking to the bottom - if so, just turn it upside down!!)

· An improvement can be made if you realise that on each pass another

 element has moved into its final position so line 2 could be replaced

 by for (j= 0;j<max-i-1;j++)

· A further improvement might be made if you test to see if it is sorted yet. We need to realise that once the array is sorted no further exchanges of neighbours will take place so, just put in the exchange routine "sorted = false" having first set it to true on every pass.

	#include <iostream.h>

#include <conio.h>

#define MAX 5

void main()

{

int A[MAX],i,j,temp,sorted=0;

clrscr();

cout<<"Enter "<<MAX<<" elements to be sorted:"<<endl;

for (i=0;i<MAX;i++) cin>>A[i];

i=0;

while ((i<MAX)&&(sorted==0))

{

sorted=1;

for (j=0;j<MAX-i-1;j++)

{

if (A[j]>A[j+1])

{

temp=A[j];

A[j]=A[j+1];

A[j+1]=temp;

sorted=0;

}

}

i++;

}

cout<<"The elements after Bubble Sort"<<endl;

for (i=0;i<MAX;i++)

cout<<A[i]<<endl;

}

MERGE SORT AND QUICK SORT

1. INTRODUCTION

· We are now looking at the 'divide and conquer' category of algorithms.

· Basically this just means splitting a problem up into simpler problems until we get to a stage where we can solve the smaller problem.

2. MERGE SORT

· The basis here is that in order to sort an array we divide it into two halves and sort each half. How do we sort a half? - by dividing it into 2 halves etc.

· Once we get down to a manageable size we merge the two halves and return through the recursion merging gradually larger and larger numbers.

 e.g.

 8 7 6 5 4 3 2 1

 8 7 6 5 4 3 2 1

 8 7 6 5 4 3 2 1

Now merge:

 7 8 5 6 3 4 1 2

 5 6 7 8 1 2 3 4

 1 2 3 4 5 6 7 8

· Here is the full program

	#include <iostream.h>

#include <conio.h>

#define MAX 7

int A[MAX];//global variables

//*****************Merge Sort functions ********************************

void Merge(int lpos, int rpos, int rend)

{

int i, lend, numelements, tmppos, TmpArray[MAX];

lend=rpos - 1;

tmppos=lpos;

numelements=rend-lpos+1;

while ((lpos<=lend)&&(rpos<=rend))

if (A[lpos] <= A[rpos]) TmpArray[tmppos++] = A[lpos++];

else TmpArray[tmppos++] = A[rpos++];

while (lpos <= lend)

TmpArray[tmppos++] = A[lpos++];

while (rpos <= rend)

TmpArray[tmppos++] = A[rpos++];

for (i = 0; i < numelements; i++, rend--)

A[rend] = TmpArray[rend];

}

void MergeSort(int left, int right)

{
int center;

if (left < right)

{

 center=(left+right)/2;

 MergeSort(left,center);

 MergeSort(center+1,right);

 Merge(left,center+1,right);

 }}

void main()

{

int i;

clrscr();

cout<<"Enter "<<MAX<<" elements to be sorted:"<<endl;

for (i=0;i<MAX;i++) cin>>A[i];

MergeSort(0,MAX-1);

cout<<"The elements after Merge Sort"<<endl;

for (i=0;i<MAX;i++)

cout<<A[i]<<endl;

}

2. QUICKSORT

· The basic algorithm was invented in 1960 by Hoare. It is a very popular sorting algorithm and is perhaps the most widely used of all sorting algorithms.

· It has been extensively analysed and is well understood. Its advantages are that it is in-place (i.e sorts within the array, does not use auxiliary memory), and is relatively simple to implement.

· It is a divide and conquer algorithm, to some extent similar to the merge sort except that the division of the table is not binary (i.e. does not simply divide the table into halves) but is based on the characteristics of the data. The division process is called "partitioning"

· The basic algorithm is:

	void QuickSort (int left,int right,int a[])

{

int pivotpos;

if (left<right)

{

pivotpos=Partition(left,right,a);

QuickSort(left,pivotpos-1,a);

QuickSort(pivotpos+1,right,a);

}

}

· The most important aspect of the algorithm is "how do we choose pivot?". As you can see from the above algorithm because we are recursively calling quicksort for two tables, left of pivot and right of pivot, (i.e. excluding the pivot element) this must mean that the pivot element must be in its final position.

· This is where the partitioning comes in. The partition process must select pivotpos such that all elements to the left are less than the pivot element and all elements to the right are greater than the pivot element.

· Consider the following:

 A S O R T I N G E X A M P L E

· Start with the rightmost element (E) and scan to the left while the elements are greater (than E). Scan from the left while the elements are less (than E)

 A S A M P L E

· Exchange the elements where the scans stopped

 A A S M P L E

· Repeat this process:

 A A O E X S M P L E

· Exchange:

 A A E O X S M P L E

· Repeat:

 A A E R T I N G O X S M P L E

· The scans cross at element 4 (the R) so now exchange the rightmost element with the 4th.

 A A E E T I N G O X S M P L R

· Now the 4th element is in its final position, all elements to the left are not greater than the 4th and all elements to the right are not less than the 4th.

· So the partitioning process has found pivotpos and made some changes in the table.

· Now what needs to be done is a quicksort on elements 1 to 3 and a quicksort on elements 5 to 15.

· The Partition function is as follows:

	void Swap(int x, int y,int a[])

{

int temp;

temp=a[x];

a[x]=a[y];

a[y]=temp;

}

int Partition (int left, int right,int a[])

{

char pivot;

int i,lastsmall,pivotpos;

Swap(left,(left+right)/2,a);

pivot=a[left];

pivotpos=left;

for(i=left+1;i<=right;i++)

if (a[i]<pivot)

Swap(++pivotpos,i,a); //move large entry to right and small to left

Swap(left,pivotpos,a);

return pivotpos;

}

· The full program for QuickSort is as follows:

	#include <iostream.h>

#include <conio.h>

#define MAX 5

void Swap(int x, int y,int a[])

{

int temp;

temp=a[x];

a[x]=a[y];

a[y]=temp;

}

int Partition (int left, int right,int a[])

{

char pivot;

int i,lastsmall,pivotpos;

Swap(left,(left+right)/2,a);

pivot=a[left];

pivotpos=left;

for(i=left+1;i<=right;i++)

if (a[i]<pivot)

Swap(++pivotpos,i,a); //move large entry to right and small to left

Swap(left,pivotpos,a);

return pivotpos;

}

void QuickSort (int left,int right,int a[])

{

int pivotpos;

if (left<right)

{

pivotpos=Partition(left,right,a);

QuickSort(left,pivotpos-1,a);

QuickSort(pivotpos+1,right,a);

}

}

void main()

{

int A[MAX],i;

clrscr();

cout<<"Enter "<<MAX<<" elements to be sorted:"<<endl;

for (i=0;i<MAX;i++) cin>>A[i];

QuickSort(0,MAX-1,A);

cout<<"The elements after Quick Sort"<<endl;

for (i=0;i<MAX;i++)

cout<<A[i]<<endl;

}

BINARY TREES

1. INTRODUCTION

· Recall that an ordered array provides a convenient structure for the implementation of the binary search algorithm, to quickly search for a data item in O (log n) time.

· However, insertion or deletion of a data item in an ordered array involves considerable amount of data movement (on an average n/2 moves).

· On the other hand, a linked list eliminates the problems associated with data movement in an array, allowing quick insertion and deletion of data items. However, searching a specified element in a linked list is not easy.

· It requires a sequential traversal of the list beginning from the first node, visiting each node until the required data item is found. Even if the data stored in a linked list are ordered, searching for an element will still require O(n) time (A binary search algorithm is not suitable for a linked list).

· A tree combines the advantages of an ordered array and a linked list.

· You can search a tree quickly as you can with an ordered array, and you can also insert and delete items quickly as you can with a linked list. While arrays, stacks, queues, and linked lists are all linear (sequential) type of data structures, trees are non-linear data structures.

· Tree: Definitions A tree is a dynamic set consisting of nodes (vertices) connected by edges. A node is generally represented by a circle, and an edge by a straight line connecting a pair of nodes. A specially designated node at the top of the tree is referred to as the root.

· A node points to (or contains references of) a set of nodes that are known as its children. This relationship is represented by connecting the node by edges to each of its children. A leaf (or an external vertex) is a node that has no children.

· A non-leaf vertex is referred to as an internal vertex. A sequence of consecutive edges from one node to another is called a path. The number of nodes in the longest path from the root to the leaves, is called the height of the tree.

· Every node in a tree is assigned a level number as follows: The root has a level number 0, and every other node is assigned a level number which is 1 more than the level number of its parent.

· The height of the tree is 1 more than the maximum level number in the tree. Any node may be considered to be root of a sub-tree, which consists of its children and its children’s children and so on. A tree with n nodes can have exactly n- 1 edges.

Binary Trees: A binary tree is a tree, where every node has at most two children, one drawn to the left, called the left child, and one drawn to the right, the right child. Every node in a binary tree is the root of at most two sub-trees, namely, its left sub-tree, and the right sub-tree.

· The data type for a node in a binary tree can be defined as follows:

	struct node

{

int data; //Data field

node *left; //A reference to the node’s left child.

node *right; //A reference to the node’s right child.

}

· If a binary tree contains n nodes, then its height is at least log2(n+1), and at most n.

2. TRAVERSAL OF BINARY TREES

· Traversal of a binary tree refers to the process of visiting all the nodes of the tree, in some specific sequence. For a linked list, the traversal was done in the natural order of the list, starting from the first node and ending at the last.

· In a tree, there are many ways in which one could traverse all the nodes. Visiting a node generally means retrieving the data item contained in the node, and sending it to some process (printing, for example).

· The three traversal orders are defined as follows:

i. Preorder Traversal: (VLR)

· Visit the current node.

· Traverse the left sub-tree of the current node.

· Traverse the right sub-tree of the current node.

· Preorder traversal can be implemented as a recursive function:

	void preOrder(node *n)

{

if (n != NULL){

cout<<n->data<<endl;//Display the current node

preOrder(n->left); //Traverse left sub-tree

preOrder(n->right); //Traverse right sub-tree

}

}

· The above function is initially called with the root as an argument: preOrder(root);

· The tree given on the previous page is visited in the following order using preorder traversal: A, B, C, D, E, F, G, H, I, J, K, L, M, N

(ii) Inorder Traversal: (LVR)

· Traverse the left sub-tree of the current node.

· Visit the current node.

· Traverse the right sub-tree of the current node.

Inorder traversal can be implemented as a recursive function:

	void inOrder(node *n){

if(n != NULL){

inOrder(n->left); //Traverse left sub-tree

cout<<n->data<<endl; //Display the current node

inOrder(n->right); //Traverse right sub-tree

}

}

The tree given above is visited in the following order using inorder traversal: C, D, B, F, E, G, A, J, I , K, H, M, L,N

(iii) Postorder Traversal: (LRV)

· Traverse the left sub-tree of the current node.

· Traverse the right sub-tree of the current node.

· Visit the current node.

· Postorder traversal can be implemented as a recursive function:

	void postOrder(node *n){

if(n != NULL){

postOrder(n->left); //Traverse left sub-tree

postOrder(n->right); //Traverse right sub-tree

cout<<n->data<<endl; //Display the current node

}

}

The tree given above is visited in the following order using postorder traversal: D, C, F, G, E, B, J, K, I, M, N, L ,H, A

3. REPRESENTATION OF ALGEBRAIC EXPRESSIONS

· A binary tree can be used to represent an algebraic expression that involves only binary arithmetic operators +, -, /, and *. The root node holds an operator, and each of its sub-trees represents either a variable (operand), or another expression. The following tree represents the expression A*(B+C)

· Traversing the above tree inorder will generate the sequence A*B+C, and here we need to insert the parenthesis to get the correct expression.

· Traversing the tree in preorder will generate the expression *A+BC, which is called the prefix notation.

· Traversing the tree in postorder will generate the expression ABC+*, which is called the postfix notation.

4. BINARY SEARCH TREE

· A binary search tree is a binary tree, with the additional condition that if a node contains a value k, then every node in its left sub-tree contains a value less than k, and every node in its right sub-tree contains a value greater than or equal to k.

· The above condition implies that every left child must have a key less than its parent, and every right child must have a key greater than or equal to its parent.

· An important consequence of the above property is that an inorder traversal on a binary tree will always visit the vertices of the tree in ascending order.

· The inorder traversal of the above tree gives the sequence: 15, 27, 30, 35, 40, 42, 51, 60, 65, 70, 80, 85, 92

· With reference to the above sequence, the node containing the value 40 is called the inorder successor of the node containing the value 35. If a node has a right sub-tree, its inorder successor is the last left node on this right sub-tree.

· The important operations on a binary search tree are:

1. Searching for a value

2. Inserting a node

3. Deleting a node

4. Finding the minimum or maximum of values stored in the tree.

4.1 SEARCHING

· Starting at the root node, the search algorithm compares the search key with the data stored in the current node.

1. If the search key is equal to the data of the current node, the value has been found, and the search is terminated.

2. If the search key is greater than the data of the current node, the search proceeds with the right child as the new current node.

3. If the search key is less than the data of the current node, the search proceeds with the left child as the new current node.

4. If the current node is NULL, the search is terminated as unsuccessful.

	void search(int val,node *root)

{

node *s = root; //start search at root

int flag=1;

while ((s->data != val)&&(flag)){ //examine current data

if(val < s->data) //go to left child

s = s->left;

else //go to right child

s = s->right;

if(s == NULL) flag=0; //no node!

}

if (flag) cout<<"found!";

else cout<<"not found";

}

· Since the above search algorithm visits at most one node in each level of the binary tree, the algorithm runs in O(h) time, where h is the height of the tree.

4.2 INSERTING A NEW NODE

· The operation of inserting a new node proceeds in the same sequence as the search operation, until it encounters a "NULL", where the new node is inserted and connected to the previous node as its parent.

	void Insert(int val,node *root)

{

node *n,*parent,*s;

n = new node; //create a new node;

n->data = val; //store value.

n->left=NULL;

n->right=NULL;

s = root; //start search at root

int flag=1;

while(flag){ //tree traversal

parent = s;

if(val < s->data){ //go to left child

s = s->left;

if(s == NULL){ //if null, insert new node

parent->left = n;

flag=0;

}

}

else { //go to right child

s = s->right;

if(s == NULL){ //if null, insert new node

parent->right = n;

flag=0;

}

}

}}

4.3 DELETING A NODE

· Deleting a node is the most complicated operation required for binary search tree. There are three cases to consider:

a. The node to be deleted is a leaf (has no children).

b. The node to be deleted has one child.

c. The node to be deleted has two children.

· To delete a leaf node, we appropriately change the child field in the node’s parent to point to null, instead of the node .

· To delete a node with one child, we change the appropriate reference in the node’s parent to point to the child of the deleted node. The child along with its sub-trees, now take the place of the deleted node.

· To delete a node with two children, we adopt the following procedure.

· Step 1: Replace the node with its inorder successor. Since the node to be deleted has two children, it has a right sub-tree, and its inorder successor is the last left node in this sub-tree.

· Step 2: Since the inorder successor is the last left node in a sub-tree, it cannot have a left child. Therefore it can have at most one child. If it has a right child, the right child will occupy the position of the inorder successor.

Before deletion of node 35

After deletion of node 35
· In the above example, the node marked for deletion has a value 35, and its inorder successor is the node with value 40 (the last left node in the right sub-tree of the node to be deleted). The following operations are performed:

· The node containing 35 is replaced with the node containing 40.The initial position of the node containing 40 is now occupied by its right child (node containing 41).

	void Remove(int val,node *root)

{

node *s=root,*temp=s,*n,*pn;

while((s->data!=val)&&(s!=NULL))

{

temp=s;

if (val<s->data) s=s->left;

else s=s->right;

}

if (s!=NULL)

{

if ((s->left==NULL)&&(s->right==NULL)) //leaf node

{

if (temp->left->data==val) temp->left=NULL;

else temp->right=NULL;

delete s;

}

if ((s->left==NULL)||(s->right==NULL)) //the node to be deleted has //only one child

{

if (temp->left->data==val)

{

if (s->right!=NULL) temp->left=s->right;

else temp->left=s->left;

}

else

{

if (s->right!=NULL) temp->right=s->right;

else temp->right=s->left;

}

}

if ((s->left!=NULL)&&(s->right!=NULL))

{

// find the inorder successor of node s (n) as well as its parent node (pn)

n=s->right;

while(n->left!=NULL)

{

pn=n; //pn is the parent of n

n=n->left;

}

s->data=n->data; // replace the data of the node to be deleted with the //data of its in-order successor

if (n->right!=NULL)

{

n->data=n->right->data;

delete n->right;

n->right=NULL;

}

else

{

pn->left=NULL;

delete n;

}

}

}

else cout<<"element doesn't exist"<<endl;

}

4.4 COMPUTING THE MINIMUM AND MAXIMUM VALUES

· To find the minimum in a binary search tree, we go the left child of the root; then go to the left child of that child and so on, until we get a node that has no left child. In other words, the minimum value is contained in the last left node in the left sub-tree of the root.

	int Minimum(node *root)

{

node *s = root;

node *last;

while (s != NULL)

{

last = s;

s = s->left;

}

return last->data;

}

· The maximum can be similarly obtained by traversing the right sub-tree, and visiting the last right child in this tree.

	int Maximum(node *root)

{

node *s = root;

node *last;

while (s != NULL){

last = s;

s = s->right;

}

return last->data;

}

<!-- saved from url=(0022)http://internet.e-mail --> HASHING

1. INTRODUCTION

· Remember that although in most of our classroom examples we are using simple lists of integers as our data sets. In practice it is not like that. The "elements" or "items" in realistic situations are records where each record might consist of several fields each field perhaps being of several digits or characters.

· However, one of the fields must be considered to be the way in which
a record is identified (hence called the IDENTIFIER). Typically this might be an employee's payroll number or a stock item's product code. This identifier is also known as the record KEY.

· Let us revert to our classroom practice where the elements are simple integers representing the identifiers (rather than records with keys). Consider the following sequence of 'keys':

 Array index 0 1 2 3 4
 Key 254 378 631 794 827

· Our search techniques to date are: sequential search or binary search

· Both assumed that the elements were held in contiguous locations in an array (as above) and the binary search required them to be sorted. Search times were O(n) and O(log2 n) respectively.

· Suppose we could generate the index of the key from the key itself!!!
We would then have a search technique with search time O(1)!!! This is what you achieve with HASHING.

2.HASHING

· With hashing techniques you attempt to find a HASH FUNCTION that is able to convert the keys (usually integers or short character strings) into integers in the range 0..N-1 where N is the number of records that can fit into the amount of memory available.

· In our classroom examples we will just consider a record to consist solely of a key that is an integer and that we want to convert the key into the index of an array. This may or may not be simple.

· The terms HASH and HASHING come from the very fact that the conversion from key to index really does 'hash' the key as in many cases the index resulting from 'hashing' a key bears absolutely no resemblance to the original key at all.

· Suppose memory was limitless then we could have the simplest hash
function of all: index = key

· In the example above this would mean declaring an array of 1000 elements and putting the keys in those elements with the same index!

· In the example this would mean that 5 elements of the array contained
data and that 995 did not! For this to be a viable proposition memory
would have to be limitless (and wastable). In practice you cannot afford such extravagance.

· The hash function you choose depends very much on the distribution of actual keys within the range of the possible keys.

3. HASH FUNCTION - TRUNCATION

· With truncation part of the key is ignored and the remainder used directly.

· Suppose in a certain situation there were just 6 keys and they were: 12302 12303 12305 12307 12308 12309

· The hash function here could be:

 index = last digit of key

 (or index = key mod 12300)

· So provided we had declared an array of 10 elements (index 0 to 9) then the hash function would be suitable and with (only?) 40% wastage. Of course the above hash function would not work if the range of keys was:

 2134 4134 5134 7134 9134
or 2560 4670 6124 8435 9200

· Here you would require a hash function that removed the last 3 digits. This is why it is necessary for you to know something about the distribution of actual keys before deciding on a hash function.

4. HASH FUNCTION - FOLDING

· Here the key is partitioned and the parts combined in some way (maybe by adding or multiplying them) to obtain the index. Suppose we have 1000 records but 8 digit keys then perhaps:

The 8 digit key such as 62538194 62538195
may be partitioned into: 625 381 94 625 381 95
the groups now added: 1100 1101
and the result truncated: 100 101

· Since all the information in the key is used in generating the index folding often achieves a better spread than truncation just by itself.

5. HASH FUNCTION - MODULAR ARITHMETIC

· The key is converted into an integer, the integer is then divided by the size of the index range and the remainder is taken as the index position of the record.

 index = key mod size

· As an example, suppose we have an 5 digit integer as a key and that there are 1000 records (and room for 1000 records)

The hash function would then be: index = key mod 1000

· If we are very lucky! our keys might be such that there is only 1 key that maps to each index. Of course we might still have the situation where two keys map to the same index (e.g. 23456, 43456) - this is called a COLLISION.

· In practice it always turns out that it is better to have an index range that is a prime number. This way you do not get so many COLLISIONS.

· In the above, it would be better to have an index range of 997 or 1009. However, collisions do and will occur.

<!-- saved from url=(0022)http://internet.e-mail --> RESOLVING COLLISIONS

1. INTRODUCTION

· At the end of lecture 12 it was pointed out that, with hashing, collisions do occur. Remember a collision is when two different keys result in the same index being produced by the hashing function. Such collisions have to be resolved.

2. COLLISION RESOLUTION WITH OPEN ADDRESSING

· 2.1 LINEAR PROBING

With linear probing you start at the point where the collision occurred and do a sequential search through the table for an empty location (if you are setting up the table) or for the desired key - or empty location (if you are searching for a target). Because the method searches in a straight line it is called linear probing.

· Note that this method should be considered circular to enable the search to be continued at the beginning of the table when the end of the table is reached.

2.2 CLUSTERING

· The problem with linear probing is that there is a tendency towards
clustering. (i.e. as more entries are made there is a greater chance
of a collision and strings of keys result). Thus the searching technique
gets reduced almost to a sequential search!

2.3 QUADRATIC PROBING

· One way of reducing clustering is to use quadratic probing. Here,
instead of probing at h+1, h+2, h+3 etc. you probe at h+1,
h+4, h+9, h+16 etc. (always mod the hash size).

3. COLLISION RESOLUTION BY CHAINING

· It is convenient to store the hash table in contiguous storage (i.e. in an array) as this way we are able to refer quickly to random positions in the table (linked storage is not suitable for this).

· However there is no reason why the records and the collisions could not be stored in linked storage. This is referred to as collision resolution by chaining.

4. EXAMPLE OF COLLISION RESOLUTION

· Consider 6 keys and a hash table of size 7. We will ensure collisions by choosing the hash function h = key mod 7 and the 7 keys as follows:

Keys 12 15 21 36 84 96
Hash index 5 1 0 1 0 5

RESOLUTION WITH LINEAR PROBE:

Index 0 1 2 3 4 5 6
Key 12
 15 12
 21 15 12
 21 15 36 12
 21 15 36 84 12
 21 15 36 84 12 96

RESOLUTION WITH CHAINING:

 Index 0 1 2 3 4 5 6
 12
 15 12
 21 15 12
 21 15-36 12
 21-84 15-36 12
 21-84 15-36 12-96

NULL

84

*

63

*

45

prev

temp

38

*

86

*

54

*

48

*

35

temp

prev

*

38

86

*

54

*

48

*

35

*

40

 ins

*

*

*

*

*

*

top

23

*

46

*

37

NULL

tail

head

NULL

37

*

46

*

23

A

H

B

L

I

C

E

N

M

J

K

G

F

D

*

+

A

B

C

60

85

35

92

70

42

27

80

65

51

40

30

15

60

85

35

92

70

42

27

30

15

80

65

51

40

41

60

85

40

70

92

42

27

30

80

65

51

41

15

PAGE
7
Data Structures

