
Methods in Java

2

Program Modules in Java

• Modules in Java

– Methods

– Classes

• Java API provides several modules

• Programmers can also create modules

– e.g., programmer-defined methods

• Methods

– Invoked by a method call

– Returns a result to calling method (caller)

– Similar to a boss (caller) asking a worker (called

method) to complete a task

3

Math-Class Methods

• Class java.lang.Math

– Provides common mathematical calculations

– Calculate the square root of 900.0:

•Math.sqrt(900.0)

– Method sqrt belongs to class Math

» Dot (.) allows access to method sqrt

– The argument 900.0 is located inside parentheses

4

Methods Declarations

• Methods

– Allow programmers to modularize programs

• Makes program development more manageable

• Software reusability

• Avoid repeating code

– Local variables

• Declared in method declaration

– Parameters

• Communicates information between methods via

method calls

int month;

int year

class Month

Defining Classes
• A class contains data declarations (static and

instance variables) and method declarations

(behaviors)

Data declarations

Method declarations

Methods

• A program that provides some functionality can be long
and contains many statements

• A method groups a sequence of statements and should
provide a well-defined, easy-to-understand functionality

– a method takes input, performs actions, and produces
output

• In Java, each method is defined within specific class

Method Declaration: Header

• A method declaration begins with a method header

method

name

return

type

parameter list

The parameter list specifies the type

and name of each parameter

The name of a parameter in the method

declaration is called a formal argument

class MyClass

{

static int min (int num1, int num2)

…

properties

Method Declaration: Body

The header is followed by the method body:

static int min(int num1, int num2)

{

int minValue = num1 < num2 ? num1 : num2;

return minValue;

}

class MyClass

{
…

…

}

9

The return Statement

• The return type of a method indicates the type of

value that the method sends back to the calling

location

– A method that does not return a value has a

void return type

• The return statement specifies the value that will be

returned

– Its expression must conform to the return type

Calling a Method

• Each time a method is called, the values of the actual
arguments in the invocation are assigned to the formal
arguments

static int min (int num1, int num2)

{

int minValue = (num1 < num2 ? num1 : num2);

return minValue;

}

int num = min (2, 3);

Method Control Flow

• A method can call another method, who can call

another method, …

min(num1, num2, num3) println()

…println(…)
min(1, 2, 3);

main

12

Method Overloading
• A class may define multiple methods with the same name---this

is called method overloading

– usually perform the same task on different data types

• Example: The PrintStream class defines multiple println
methods, i.e., println is overloaded:

println (String s)

println (int i)

println (double d)

…

• The following lines use the System.out.print method for different
data types:

System.out.println ("The total is:");

double total = 0;

System.out.println (total);

Widening Primitive Conversions

• Widening primitive conversions are those that do not lose
information about the overall magnitude of a numeric
value

• Java defines 19 primitive conversions as widening
primitive conversions

byte  short, int, long, float, double

short int, long, float, double

char  int, long, float, double

int  long, float, double

long  float, double

float double

• They are generally safe because they tend to go from a
small data type to a larger one (such as a short to an int)

– can problems happen in some of the cases?

Narrowing Primitive Conversions

• Java defines 23 primitive conversions as narrowing primitive

conversions

byte  char

short  byte, char

char  byte, short

int  byte, short, char

long  byte, short, char, int

float  byte, short, char, int, long

double byte, short, char, int, long, float

• Narrowing primitive conversions may lose overall magnitude

of a numeric value, or precision

15

Method Overloading: Signature

• The compiler must be able to determine which version of

the method is being invoked

• This is by analyzing the parameters, which form the

signature of a method

– the signature includes the type and order of the

parameters

• if multiple methods match a method call, the compiler

picks the best match

• if none matches exactly but some implicit conversion

can be done to match a method, then the method is

invoke with implicit conversion (widening).

– the return type of the method is not part of the signature

How Do Data Conversions

Happen?
• Implicitly: arithmetic (numeric) promotion

– occurs automatically when the operands of a binary arithmetic
operator (note “=“ is not one) are of different types

• the promotion uses widening conversion, i.e.,

– if either operand is double, the other is converted to double

– otherwise, if either operand is float, the other is converted to
float

– otherwise, if either operand is long, the other is converted to
long

– otherwise, both operands are converted to int

Examples:

- 4.0 / 8 (which / is it: double/double, float/float, int/int)

- 4 / 8.0 (which / is it: double/double, float/float, int/int)

- 4 + 5 / 9 + 1.0 + 5 / 9 / 10.0 (what is the value?)

Method Overloading

double tryMe (int x)

{

return x + .375;

}

Version 1

double tryMe (int x, double y)

{

return x * y;

}

Version 2

result = tryMe (25, 4.32)

Invocation

More Examples

double tryMe (int x)

{

return x + 5;

}

double tryMe (double x)

{

return x * .375;

}

double tryMe (double x, int y)

{

return x + y;

}

tryMe(1);

tryMe(1.0);

tryMe(1.0, 2);

tryMe(1, 2);

tryMe(1.0, 2.0); //Error

Which tryMe will be called?

19

Java API Packages

• Packages

– Classes grouped into categories of related

classes

– Promotes software reuse

– import statements specify classes used in

Java programs

• e.g., import javax.swing.JApplet;

20

Random-Number

Generation
• Java random-number generators

– Math.random()

•(int) (Math.random() * 6)

– Produces integers from 0 - 5

– Use a seed for different random-number

sequences

21

import javax.swing.JOptionPane;

public class RandomIntegers {

public static void main(String args[])

{

int value;

String output = "";

for (int counter = 1; counter <= 20; counter++) {

value = 1 + (int) (Math.random() * 6);

output += value + " ";

if (counter % 5 == 0)

output += "\n"; }

JOptionPane.showMessageDialog

(null, output, "20 Random Numbers from 1 to 6",

JOptionPane.INFORMATION_MESSAGE);

System.exit(0); } }

Variables scoping

• At a given point, the variables that a

statement can access are determined by the

scoping rule

– the scope of a variable is the section of a program

in which the variable can be accessed (also called

visible or in scope)

• There are two types of scopes in Java

– class scope

• a variable defined in a class but not in any method

– block scope

• a variable defined in a block {} of a method; it is also

called a local variable

Java Scoping Rule
• A variable with a class scope

– class/static variable: a variable defined in class scope and has the
static property

• it is associated with the class

• and thus can be accessed (in scope) in all methods in the class

– instance variable: a variable defined in class scope but not static

• it is associated with an instance of an object of the class,

• and thus can be accessed (in scope) only in instance methods,
i.e., those non-static methods

• A variable with a block scope

– can be accessed in the enclosing block; also called local variable

– a local variable can shadow a variable in a class scope with the same
name

• Do not confuse scope with duration

– a variable may exist but is not accessible in a method,

• e.g., method A calls method B, then the variables declared in
method A exist but are not accessible in B.

Scoping Rules (cont.):

Variables in a method

• There are can be three types of variables

accessible in a method :

– class and instance variables

• static and instance variables of the class

– local variables

• those declared in the method

– formal arguments

Example1:

public class Box

{

private int length, width;

…

public int widen (int extra_width)

{

private int temp1;

size += extra_width;

…

}

public int lenghten (int extra_lenth)

{

private int temp2;

size += extra_length;

…

}

…

}

• instance variables

• formal arguments

• local variables

Scope of Variables

• Instance variables are
accessible in all methods
of the class

• formal arguments are
valid within their methods

• Local variables are valid
from the point of
declaration to the end of
the enclosing block

public class Box

{

private int length, width;

…

public int widen (int extra_width)

{

private int temp1;

size += extra_width;

…

}

public int lenghten (int extra_lenth)

{

private int temp2;

size += extra_length;

…

}

…

}

public class Test

{

final static int NO_OF_TRIES = 3;

static int i = 100;

public static int square (int x)

{

// NO_OF_TRIES, x, i in scope

int mySquare = x * x;

// NO_OF_TRIES, x, i, mySquare in scope

return mySquare;

}

public static int askForAPositiveNumber (int x)

{

// NO_OF_TRIES, x, i in scope

for (int i = 0; i < NO_OF_TRIES; i++)

{ // NO_OF_TRIES, x, i in scope; local i shadows class i

System.out.print(“Input: “);

Scanner scan = new Scanner(System.in);

String str = scan.nextLine();

int temp = Integer.parseInt(str);

// NO_OF_TRIES, x, i, scan, str, temp in scope

if (temp > 0) return temp;

}

// NO_OF_TRIES, x, i in scope

return 0;

} // askForPositiveNumber

public static void main(String[] args)

{…}

}

Two Types of Parameter Passing

• If a modification of the formal argument
has no effect on the actual argument,
– it is call by value

• If a modification of the formal argument
can change the value of the actual
argument,
– it is call by reference

Call-By-Value and

Call-By-Reference in Java

• Depend on the type of the formal argument

• If a formal argument is a primitive data type, a
modification on the formal argument has no effect on
the actual argument

– this is call by value, e.g. num1 = min(2, 3);

num2 = min(x, y);

• This is because primitive data types variables contain
their values, and procedure call trigger an assignment:

<formal argument> = <actual argument>

int x = 2; int y = 3;

int num = min (x, y);

…

static int num(int num1, int num2)

{ … }

int x = 2;

int y = 3;

int num1 = x;

int num2 = y;

{ … }

Call-By-Value and

Call-By-Reference in Java

• If a formal argument is not a primitive data type, an
operation on the formal argument can change the
actual argument
– this is call by reference

• This is because variables of object type contain
pointers to the data that represents the object

• Since procedure call triggers an assignment
<formal argument> = <actual argument>

it is the pointer that is copied, not the object itself!

MyClass x = new MyClass();

MyClass y = new MyClass();

MyClass.swap(x, y);

…

static void swap(MyClass x1, MyClass x2)

{ … }

x = new MC();

y = new MC();

x1 = x;

x2 = y;

{ … }

31

Classes define Objects
• In object-oriented design, we group methods together

according to objects on which they operate

• An object has:
– state - descriptive characteristics

– behaviors - what it can do (or be done to it), may depend on
the state, and can change the state

• For example, a calendar program needs Month objects:
– the state of a Month object is a (month,year) pair of numbers

– these are stored as instance variables of the Month class

– the Month class can also have class variables, e.g. the day of
the week that Jan 1, 2000 falls on…

– some behaviors of a month object are:

• get name, get first weekday, get number of days,

• print

• set month index, set year

int month;

int year

class Month

Defining Classes

• A class contains data declarations (state)

and method declarations (behaviors)

Data declarations

Method declarations

Method Types
• There can be various types of methods (behavior declarations)

– access methods : read or display states (or those that can be
derived)

– predicate methods : test the truth of some conditions

– action methods, e.g., print

– constructors: a special type of methods

• they have the same name as the class

– there may be more then one constructor per class
(overloaded constructors)

• they do not return any value

– it has no return type, not even void

• they initialize objects of the class, using the new construct:

– e.g. m1 = new Month();

• you do not have to define a constructor

– the value of the state variables have default value

