Methods in Java

Program Modules in Java

Modules in Java

— Methods

— Classes

Java API provides several modules
Programmers can also create modules

— e.g., programmer-defined methods
Methods

— Invoked by a method call

— Returns a result to calling method (callen

— Similar to a boss (caller) asking a worker (called
method) to complete a task

Math-Class Methods

« Class java. lang.Math

— Provides common mathematical calculations

— Calculate the square root of 900. O:

e Math.sqgrt(900.0)

— Method sqrt belongs to class Math
» Dot (.) allows access to method sqrt
— The argument 900.0 is located inside parentheses

Methods Declarations

 Methods

— Allow programmers to modularize programs
« Makes program development more manageable
« Software reusability
 Avoid repeating code

— Local variables
» Declared in method declaration

— Parameters

« Communicates information between methods via
method calls

Defining Classes

A class contains data declarations (static and
Instance variables) and method declarations
(behaviors)

/cla.tss Month \

int month;
int year

Data declarations

> Method declarations

Methods

« A program that provides some functionality can be long
and contains many statements

* A method groups a sequence of statements and should
provide a well-defined, easy-to-understand functionality

— a method takes input, performs actions, and produces
output

 |In Java, each method is defined within specific class

Method Declaration: Header

* A method declaration begins with a method header

class MyClass
{ .

static int min (int numl, int num2)

+ 4

A\ J
1 Y

method parameter list

name _ -
The parameter list specifies the type

return and name of each parameter
type

_ The name of a parameter in the method
properties declaration is called a formal argument

Method Declaration: Body
The header is followed by the method body:

class MyClass
{

static int min(int numl, int num2)

{

int minValue = numl < num2 ? numl : num2;
return minValue;

The return Statement

« The return type of a method indicates the type of
value that the method sends back to the calling
location

— A method that does not return a value has a
void return type

« The return statement specifies the value that will be
returned

— Its expression must conform to the return type

Calling a Method

« Each time a method is called, the values of the actual
arguments in the invocation are assigned to the formal
arguments

int num = min (2, 3);

static int min (int numl, int num2)

{

int minValue = (numl < num2 ? numl : num2);
return minValue;

Method Control Flow

« A method can call another method, who can call
another method, ...

-

main

~

L
min(l, 2, 3);

~

min (numl, num2, num3)

|

println ()

~

pE————

.println(...)

/

\Z

Method Overloading

A class may define multiple methods with the same name---this
Is called method overloading

— usually perform the same task on different data types

Example: The PrintStream class defines multiple printin
methods, i.e., println is overloaded:

println (String s)
printin (int i)
printin (double d)

The following lines use the System.out.print method for different
data types:

System.out.printin ("The total is:");
double total = 0O;

System.out.printin (total);

12

Widening Primitive Conversions

Widening primitive conversions are those that do not lose
Information about the overall magnitude of a numeric
value

Java defines 19 primitive conversions as widening
primitive conversions

byte — short, int, long, float, double
short — int, long, float, double

char — int, long, float, double

Int — long, float, double

long — float, double

float — double

They are generally safe because they tend to go from a
small data type to a larger one (such as a short to an int)

— can problems happen in some of the cases?

Narrowing Primitive Conversions

 Java defines 23 primitive conversions as narrowing primitive
conversions

byte — char

short — byte, char

char — byte, short

Int — byte, short, char

long — byte, short, char, int

float — byte, short, char, int, long
double— byte, short, char, int, long, float

« Narrowing primitive conversions may lose overall magnitude
of a numeric value, or precision

Method Overloading: Signhature

* The compiler must be able to determine which version of
the method is being invoked

« This is by analyzing the parameters, which form the
signature of a method

— the signature includes the type and order of the
parameters

* if multiple methods match a method call, the compiler
picks the best match

* If none matches exactly but some implicit conversion
can be done to match a method, then the method Is
Invoke with implicit conversion (widening).

— the return type of the method is not part of the signature

15

How Do Data Conversions
Happen?

« Implicitly: arithmetic (numeric) promotion

— occurs automatically when the operands of a binary arithmetic
operator (note “=* is not one) are of different types

* the promotion uses widening conversion, i.e.,
— If either operand is double, the other is converted to double

— otherwise, if either operand is float, the other is converted to
float

— otherwise, if either operand is long, the other is converted to
long

— otherwise, both operands are converted to int

Examples:
- 4.0/ 8 (which / is it: double/double, float/float, int/int)
-4 /8.0 (which / is it: double/double, float/float, int/int)
-4+5/9+1.0+5/9/10.0 (what is the value?)

Method Overloading

Version 1 Version 2
double tryMe (int x) double tryMe (int x, double vy)
{ {
return x + .375; return x * y;
} }
Invocation

result = tryMe (25, 4.32)

More Examples

double tryMe (int x)
{

return x + 5;

}

Which tryMe will be called?

double tryMe (double x)
{

return x * .375;

}

double tryMe (double x, int y)
{

return x + y;

}

tryMe(1);
tryMe(1.0);
tryMe(1.0, 2);
tryMe(1, 2);

tryMe(1.0, 2.0); //Error

Java API Packages

« Packages

— Classes grouped into categories of related
classes

— Promotes software reuse

- Import statements specify classes used in
Java programs

« e.g., import javax.swing.JApplet;

19

Random-Number

Generation
« Java random-number generators

—Math.random()
e« (int) (Math.random() * =)

— Produces integers from 0 - 5

— Use a seed for different random-number
sequences

20

import javax.swing.JOptionPane;
public class RandomIntegers ({
public static void main(String args|[])
{
int value;
String output = "";
for (int counter = 1; counter <= 20; counter++) {
value =1 + (int) (Math.random() * 6) ;
output += value + " '';
if (counter % == 0)
output += "\n"; }
JOptionPane.showMessageDialog
(null, output, "20 Random Numbers from 1 to 6",

JOptionPane.INFORMATION MESSAGE) ;

System.exit(0);
Y R pre——r

51165
56461
14156
15251

OK &
21

Variables scoping

« At a given point, the variables that a
statement can access are determined by the
scoping rule
— the scope of a variable is the section of a program

In which the variable can be accessed (also called
visible or in scope)

* There are two types of scopes in Java

— class scope
« avariable defined in a class but not in any method

— block scope

« a variable defined in a block {} of a method; it is also
called a local variable

Java Scoping Rule

« A variable with a class scope

— class/static variable. a variable defined in class scope and has the
static property

* it Is associated with the class

» and thus can be accessed (in scope) in all methods in the class
— Instance variable. a variable defined in class scope but not static

* it Is associated with an instance of an object of the class,

 and thus can be accessed (in scope) only in instance methods,
l.e., those non-static methods

« A variable with a block scope
— can be accessed in the enclosing block; also called local variable

— alocal variable can shadow a variable in a class scope with the same
name

« Do not confuse scope with duration
— avariable may exist but is not accessible in a method,

* e.g., method A calls method B, then the variables declared in
method A exist but are not accessible in B.

Scoping Rules (cont.):
Variables in a method

 There are can be three types of variables
accessible in a method .

— class and instance variables
e static and instance variables of the class

— local variables
* those declared in the method

— formal arguments

Examplel.:

public class Box

{
private int length, width;

public int widen (int extra width)

{

private int templ;
size += extra width;

}
public int lenghten (int extra lenth)

{

private int temp2;
size += extra length;

Instance variables

« formal arguments

local variables

Scope of Variables

public class Box

{

private int length, width;

public int widen (int extra width)

{

private int templ;
size += extra width;

}

public int lenghten (int extra lenth)

{

private int temp2;
size += extra length;

Instance variables are
accessible in all methods
of the class

formal arguments are
valid within their methods

Local variables are valid
from the point of
declaration to the end of
the enclosing block

public class Test

{

final static int NO_OF TRIES = 3;
static int i = 100;
public static int square (int x)
{
// NO_OF TRIES, x, i in scope
int mySquare = x * x;
// NO_OF TRIES, x, i, mySquare in scope
return mySquare;

}
public static int askForAPositiveNumber (int x)

{
// NO_OF TRIES, x, i in scope
for (int i = 0; i < NO OF TRIES; i++)
{ // NO OF TRIES, x, i in scope; local i shadows class i
System.out.print (“Input: “);
Scanner scan = new Scanner(System.in) ;
String str = scan.nextLine();
int temp = Integer.parseInt(str);
// NO _OF TRIES, x, i, scan, str, temp in scope
if (temp > 0) return temp;
}
// NO_OF TRIES, x, i in scope
return O;
} // askForPositiveNumber
public static void main(String[] args)

{..}

Two Types of Parameter Passing

 If a modification of the formal argument
has no effect on the actual argument,

— It is call by value

 If a modification of the formal argument
can change the value of the actual
argument,

— It Is call by reference

Call-By-Value and
Call-By-Reference in Java

« Depend on the type of the formal argument

 If a formal argument is a primitive data type, a
modification on the formal argument has no effect on
the actual argument

— this is call by value, e.g. numl = min (2, 3);
num2 = min(x, y);
« This is because primitive data types variables contain
their values, and procedure call trigger an assignment:
<formal argument> = <actual argument>

int x = 2; int y = 3; int x = 2;
int num = min (x, y); int y = 3;
int numl =

static int num(int numl, int num2) int num2

{ ...} { ..}

Call-By-Value and
Call-By-Reference in Java

« If a formal argument is not a primitive data type, an
operation on the formal argument can change the
actual argument
— this is call by reference

« This Is because variables of object type contain
pointers to the data that represents the object

e Since procedure call triggers an assignment
<formal argument> = <actual argument>

it Is the pointer that is copied, not the object itself!

MyClass x = new MyClass() ; X = new MC() ;
MyClass y = new MyClass() ; v = new MC();
MyClass.swap(x, y) x1 = x:
static void swap(MyClass xl1, MyClass x2)){{2 =}y;

{ ..} '

Classes define Objects

In object-oriented design, we group methods together
according to objects on which they operate

An object has:
— State - descriptive characteristics

— behaviors - what it can do (or be done to it), may depend on
the state, and can change the state

For example, a calendar program needs Month objects:
— the state of a Month object is a (month,year) pair of numbers
— these are stored as /nstance variables of the Month class

— the Month class can also have class variables, e.q. the day of
the week that Jan 1, 2000 falls on...
— some behaviors of a month object are:
» get name, get first weekday, get number of days,
e print

« set month index, set year 31

Defining Classes

* A class contains data declarations (state)
and method declarations (behaviors)

/cla.tss Month \

int month;
int year

Data declarations

> Method declarations

Method Types

There can be various types of methods (behavior declarations)

— access methods : read or display states (or those that can be
derived)

— predicate methods : test the truth of some conditions
— action methods, e.g., print
— constructors: a special type of methods

» they have the same name as the class

— there may be more then one constructor per class
(overloaded constructors)

* they do not return any value
— It has no return type, not even void

« they initialize objects of the class, using the new construct:
—e.g. m1 = new Month();

* you do not have to define a constructor
— the value of the state variables have default value

