
Methods in Java

2

Program Modules in Java

• Modules in Java

– Methods

– Classes

• Java API provides several modules

• Programmers can also create modules

– e.g., programmer-defined methods

• Methods

– Invoked by a method call

– Returns a result to calling method (caller)

– Similar to a boss (caller) asking a worker (called

method) to complete a task

3

Math-Class Methods

• Class java.lang.Math

– Provides common mathematical calculations

– Calculate the square root of 900.0:

•Math.sqrt(900.0)

– Method sqrt belongs to class Math

» Dot (.) allows access to method sqrt

– The argument 900.0 is located inside parentheses

4

Methods Declarations

• Methods

– Allow programmers to modularize programs

• Makes program development more manageable

• Software reusability

• Avoid repeating code

– Local variables

• Declared in method declaration

– Parameters

• Communicates information between methods via

method calls

int month;

int year

class Month

Defining Classes
• A class contains data declarations (static and

instance variables) and method declarations

(behaviors)

Data declarations

Method declarations

Methods

• A program that provides some functionality can be long
and contains many statements

• A method groups a sequence of statements and should
provide a well-defined, easy-to-understand functionality

– a method takes input, performs actions, and produces
output

• In Java, each method is defined within specific class

Method Declaration: Header

• A method declaration begins with a method header

method

name

return

type

parameter list

The parameter list specifies the type

and name of each parameter

The name of a parameter in the method

declaration is called a formal argument

class MyClass

{

static int min (int num1, int num2)

…

properties

Method Declaration: Body

The header is followed by the method body:

static int min(int num1, int num2)

{

int minValue = num1 < num2 ? num1 : num2;

return minValue;

}

class MyClass

{
…

…

}

9

The return Statement

• The return type of a method indicates the type of

value that the method sends back to the calling

location

– A method that does not return a value has a

void return type

• The return statement specifies the value that will be

returned

– Its expression must conform to the return type

Calling a Method

• Each time a method is called, the values of the actual
arguments in the invocation are assigned to the formal
arguments

static int min (int num1, int num2)

{

int minValue = (num1 < num2 ? num1 : num2);

return minValue;

}

int num = min (2, 3);

Method Control Flow

• A method can call another method, who can call

another method, …

min(num1, num2, num3) println()

…println(…)
min(1, 2, 3);

main

12

Method Overloading
• A class may define multiple methods with the same name---this

is called method overloading

– usually perform the same task on different data types

• Example: The PrintStream class defines multiple println
methods, i.e., println is overloaded:

println (String s)

println (int i)

println (double d)

…

• The following lines use the System.out.print method for different
data types:

System.out.println ("The total is:");

double total = 0;

System.out.println (total);

Widening Primitive Conversions

• Widening primitive conversions are those that do not lose
information about the overall magnitude of a numeric
value

• Java defines 19 primitive conversions as widening
primitive conversions

byte short, int, long, float, double

short int, long, float, double

char int, long, float, double

int long, float, double

long float, double

float double

• They are generally safe because they tend to go from a
small data type to a larger one (such as a short to an int)

– can problems happen in some of the cases?

Narrowing Primitive Conversions

• Java defines 23 primitive conversions as narrowing primitive

conversions

byte char

short byte, char

char byte, short

int byte, short, char

long byte, short, char, int

float byte, short, char, int, long

double byte, short, char, int, long, float

• Narrowing primitive conversions may lose overall magnitude

of a numeric value, or precision

15

Method Overloading: Signature

• The compiler must be able to determine which version of

the method is being invoked

• This is by analyzing the parameters, which form the

signature of a method

– the signature includes the type and order of the

parameters

• if multiple methods match a method call, the compiler

picks the best match

• if none matches exactly but some implicit conversion

can be done to match a method, then the method is

invoke with implicit conversion (widening).

– the return type of the method is not part of the signature

How Do Data Conversions

Happen?
• Implicitly: arithmetic (numeric) promotion

– occurs automatically when the operands of a binary arithmetic
operator (note “=“ is not one) are of different types

• the promotion uses widening conversion, i.e.,

– if either operand is double, the other is converted to double

– otherwise, if either operand is float, the other is converted to
float

– otherwise, if either operand is long, the other is converted to
long

– otherwise, both operands are converted to int

Examples:

- 4.0 / 8 (which / is it: double/double, float/float, int/int)

- 4 / 8.0 (which / is it: double/double, float/float, int/int)

- 4 + 5 / 9 + 1.0 + 5 / 9 / 10.0 (what is the value?)

Method Overloading

double tryMe (int x)

{

return x + .375;

}

Version 1

double tryMe (int x, double y)

{

return x * y;

}

Version 2

result = tryMe (25, 4.32)

Invocation

More Examples

double tryMe (int x)

{

return x + 5;

}

double tryMe (double x)

{

return x * .375;

}

double tryMe (double x, int y)

{

return x + y;

}

tryMe(1);

tryMe(1.0);

tryMe(1.0, 2);

tryMe(1, 2);

tryMe(1.0, 2.0); //Error

Which tryMe will be called?

19

Java API Packages

• Packages

– Classes grouped into categories of related

classes

– Promotes software reuse

– import statements specify classes used in

Java programs

• e.g., import javax.swing.JApplet;

20

Random-Number

Generation
• Java random-number generators

– Math.random()

•(int) (Math.random() * 6)

– Produces integers from 0 - 5

– Use a seed for different random-number

sequences

21

import javax.swing.JOptionPane;

public class RandomIntegers {

public static void main(String args[])

{

int value;

String output = "";

for (int counter = 1; counter <= 20; counter++) {

value = 1 + (int) (Math.random() * 6);

output += value + " ";

if (counter % 5 == 0)

output += "\n"; }

JOptionPane.showMessageDialog

(null, output, "20 Random Numbers from 1 to 6",

JOptionPane.INFORMATION_MESSAGE);

System.exit(0); } }

Variables scoping

• At a given point, the variables that a

statement can access are determined by the

scoping rule

– the scope of a variable is the section of a program

in which the variable can be accessed (also called

visible or in scope)

• There are two types of scopes in Java

– class scope

• a variable defined in a class but not in any method

– block scope

• a variable defined in a block {} of a method; it is also

called a local variable

Java Scoping Rule
• A variable with a class scope

– class/static variable: a variable defined in class scope and has the
static property

• it is associated with the class

• and thus can be accessed (in scope) in all methods in the class

– instance variable: a variable defined in class scope but not static

• it is associated with an instance of an object of the class,

• and thus can be accessed (in scope) only in instance methods,
i.e., those non-static methods

• A variable with a block scope

– can be accessed in the enclosing block; also called local variable

– a local variable can shadow a variable in a class scope with the same
name

• Do not confuse scope with duration

– a variable may exist but is not accessible in a method,

• e.g., method A calls method B, then the variables declared in
method A exist but are not accessible in B.

Scoping Rules (cont.):

Variables in a method

• There are can be three types of variables

accessible in a method :

– class and instance variables

• static and instance variables of the class

– local variables

• those declared in the method

– formal arguments

Example1:

public class Box

{

private int length, width;

…

public int widen (int extra_width)

{

private int temp1;

size += extra_width;

…

}

public int lenghten (int extra_lenth)

{

private int temp2;

size += extra_length;

…

}

…

}

• instance variables

• formal arguments

• local variables

Scope of Variables

• Instance variables are
accessible in all methods
of the class

• formal arguments are
valid within their methods

• Local variables are valid
from the point of
declaration to the end of
the enclosing block

public class Box

{

private int length, width;

…

public int widen (int extra_width)

{

private int temp1;

size += extra_width;

…

}

public int lenghten (int extra_lenth)

{

private int temp2;

size += extra_length;

…

}

…

}

public class Test

{

final static int NO_OF_TRIES = 3;

static int i = 100;

public static int square (int x)

{

// NO_OF_TRIES, x, i in scope

int mySquare = x * x;

// NO_OF_TRIES, x, i, mySquare in scope

return mySquare;

}

public static int askForAPositiveNumber (int x)

{

// NO_OF_TRIES, x, i in scope

for (int i = 0; i < NO_OF_TRIES; i++)

{ // NO_OF_TRIES, x, i in scope; local i shadows class i

System.out.print(“Input: “);

Scanner scan = new Scanner(System.in);

String str = scan.nextLine();

int temp = Integer.parseInt(str);

// NO_OF_TRIES, x, i, scan, str, temp in scope

if (temp > 0) return temp;

}

// NO_OF_TRIES, x, i in scope

return 0;

} // askForPositiveNumber

public static void main(String[] args)

{…}

}

Two Types of Parameter Passing

• If a modification of the formal argument
has no effect on the actual argument,
– it is call by value

• If a modification of the formal argument
can change the value of the actual
argument,
– it is call by reference

Call-By-Value and

Call-By-Reference in Java

• Depend on the type of the formal argument

• If a formal argument is a primitive data type, a
modification on the formal argument has no effect on
the actual argument

– this is call by value, e.g. num1 = min(2, 3);

num2 = min(x, y);

• This is because primitive data types variables contain
their values, and procedure call trigger an assignment:

<formal argument> = <actual argument>

int x = 2; int y = 3;

int num = min (x, y);

…

static int num(int num1, int num2)

{ … }

int x = 2;

int y = 3;

int num1 = x;

int num2 = y;

{ … }

Call-By-Value and

Call-By-Reference in Java

• If a formal argument is not a primitive data type, an
operation on the formal argument can change the
actual argument
– this is call by reference

• This is because variables of object type contain
pointers to the data that represents the object

• Since procedure call triggers an assignment
<formal argument> = <actual argument>

it is the pointer that is copied, not the object itself!

MyClass x = new MyClass();

MyClass y = new MyClass();

MyClass.swap(x, y);

…

static void swap(MyClass x1, MyClass x2)

{ … }

x = new MC();

y = new MC();

x1 = x;

x2 = y;

{ … }

31

Classes define Objects
• In object-oriented design, we group methods together

according to objects on which they operate

• An object has:
– state - descriptive characteristics

– behaviors - what it can do (or be done to it), may depend on
the state, and can change the state

• For example, a calendar program needs Month objects:
– the state of a Month object is a (month,year) pair of numbers

– these are stored as instance variables of the Month class

– the Month class can also have class variables, e.g. the day of
the week that Jan 1, 2000 falls on…

– some behaviors of a month object are:

• get name, get first weekday, get number of days,

• print

• set month index, set year

int month;

int year

class Month

Defining Classes

• A class contains data declarations (state)

and method declarations (behaviors)

Data declarations

Method declarations

Method Types
• There can be various types of methods (behavior declarations)

– access methods : read or display states (or those that can be
derived)

– predicate methods : test the truth of some conditions

– action methods, e.g., print

– constructors: a special type of methods

• they have the same name as the class

– there may be more then one constructor per class
(overloaded constructors)

• they do not return any value

– it has no return type, not even void

• they initialize objects of the class, using the new construct:

– e.g. m1 = new Month();

• you do not have to define a constructor

– the value of the state variables have default value

