
1

Chapter 1 - Introduction to Java

Applications

2

Basics of a Typical Java Environment

• Java programs normally undergo five phases

– Edit

• Programmer writes program (and stores program on disk)

– Compile

• Compiler creates bytecodes from program

– Load

• Class loader stores bytecodes in memory

– Verify

• Verifier ensures bytecodes do not violate security requirements

– Execute

• Interpreter translates bytecodes into machine language

3

Fig . 1.1 Typ ic a l Java environment.

Primary
Memory

.

.

.

.

.

.

Disk

Disk

Disk

Editor

Compiler

Class Loader

Program is created in an
editor and stored on disk in a
file ending with .java.

Compiler creates bytecodes
and stores them on disk in a
file ending with .class.

Class loader reads
.class files containing
bytecodes from disk and
puts those bytecodes in
memory.

Phase 1

Phase 2

Phase 3

Primary
Memory

.

.

.

.

.

.

Bytecode Verifier Bytecode verifier confirms
that all bytecodes are valid
and do not violate Java’s
security restrictions.

Phase 4

Primary
Memory

.

.

.

.

.

.

Interpreter
Interpreter reads bytecodes
and translates them into a
language that the computer
can understand, possibly
storing data values as the
program executes.

Phase 5

4

Welcome1.java

Program Output

1 // Fig. 2.1: Welcome1.java

2 // Text-printing program.

3

4 public class Welcome1 {

5

6 // main method begins execution of Java application

7 public static void main(String args[])

8 {

9 System.out.println("Welcome to Java Programming!");

10

11 } // end method main

12

13 } // end class Welcome1

Welcome to Java Programming!

A First Program in Java: Printing a Line of Text

5

A First Program in Java: Printing a Line of

Text

– Comments start with: //

• Comments ignored during program execution

• Document and describe code

• Provides code readability

– Traditional comments: /* ... */

/* This is a traditional

comment. It can be
split over many lines */

– Another line of comments

– Note: line numbers not part of program, added for reference

1 // Fig. 2.1: Welcome1.java

2 // Text-printing program.

6

– Blank line

• Makes program more readable

• Blank lines, spaces, and tabs are white-space characters

– Ignored by compiler

– Begins class declaration for class Welcome1

• Every Java program has at least one user-defined class

• Keyword: words reserved for use by Java

– class keyword followed by class name

• Naming classes: capitalize every word

– SampleClassName

A Simple Program: Printing a Line of Text

3

4 public class Welcome1 {

7

A Simple Program: Printing a Line of Text

– Name of class called identifier

• Series of characters consisting of letters, digits,

underscores (_) and dollar signs ($)

• Does not begin with a digit, has no spaces

• Examples: Welcome1, $value, _value, button7

– 7button is invalid

• Java is case sensitive (capitalization matters)

– a1 and A1 are different

– For chapters 2 to 7, use public keyword

• Certain details not important now

• Mimic certain features, discussions later

4 public class Welcome1 {

8

A Simple Program: Printing a Line of Text

– Saving files

• File name must be class name with .java extension

• Welcome1.java

– Left brace {

• Begins body of every class

• Right brace ends declarations (line 13)

– Part of every Java application

• Applications begin executing at main

– Parenthesis indicate main is a method (ch. 6)

– Java applications contain one or more methods

4 public class Welcome1 {

7 public static void main(String args[])

9

A Simple Program: Printing a Line of Text

• Exactly one method must be called main

– Methods can perform tasks and return information

• void means main returns no information

• For now, mimic main's first line

– Left brace begins body of method declaration

• Ended by right brace } (line 11)

7 public static void main(String args[])

8 {

10

A Simple Program: Printing a Line of Text

– Instructs computer to perform an action

• Prints string of characters

– String - series characters inside double quotes

• White-spaces in strings are not ignored by compiler

– System.out

• Standard output object

• Print to command window (i.e., MS-DOS prompt)

– Method System.out.println

• Displays line of text

• Argument inside parenthesis

– This line known as a statement

• Statements must end with semicolon ;

9 System.out.println("Welcome to Java Programming!");

11

A Simple Program: Printing a Line of Text

– Ends method declaration

– Ends class declaration

– Can add comments to keep track of ending braces

– Lines 8 and 9 could be rewritten as:

– Remember, compiler ignores comments

– Comments can start on same line after code

11 } // end method main

13 } // end class Welcome1

12

A Simple Program: Printing a Line of Text

• Compiling a program

– Open a command prompt window, go to directory where

program is stored

– Type javac Welcome1.java

– If no errors, Welcome1.class created

• Has bytecodes that represent application

• Bytecodes passed to Java interpreter

13

A Simple Program: Printing a Line of Text

• Executing a program

– Type java Welcome1

• Interpreter loads .class file for class Welcome1

• .class extension omitted from command

– Interpreter calls method main

Fig. 2.2 Executing Welcome1 in a Microsoft Windows 2000 Command Prompt.

14

Modifying Our First Java Program

• Modifying programs

– Welcome2.java (Fig. 2.3) produces same output as

Welcome1.java (Fig. 2.1)

– Using different code

– Line 9 displays “Welcome to ” with cursor remaining on

printed line

– Line 10 displays “Java Programming! ” on same line with

cursor on next line

9 System.out.print("Welcome to ");

10 System.out.println("Java Programming!");

15

Welcome to Java Programming!

1 // Fig. 2.3: Welcome2.java

2 // Printing a line of text with multiple statements.

3

4 public class Welcome2 {

5

6 // main method begins execution of Java application

7 public static void main(String args[])

8 {

9 System.out.print("Welcome to ");

10 System.out.println("Java Programming!");

11

12 } // end method main

13

14 } // end class Welcome2
System.out.print keeps the cursor on

the same line, so System.out.println

continues on the same line.

16

Modifying Our First Java Program

• Newline characters (\n)

– Interpreted as “special characters” by methods

System.out.print and System.out.println

– Indicates cursor should be on next line

– Welcome3.java (Fig. 2.4)

– Line breaks at \n

• Usage

– Can use in System.out.println or

System.out.print to create new lines

• System.out.println(

"Welcome\nto\nJava\nProgramming!");

9 System.out.println("Welcome\nto\nJava\nProgramming!");

17

1 // Fig. 2.4: Welcome3.java

2 // Printing multiple lines of text with a single statement.

3

4 public class Welcome3 {

5

6 // main method begins execution of Java application

7 public static void main(String args[])

8 {

9 System.out.println("Welcome\nto\nJava\nProgramming!");

10

11 } // end method main

12

13 } // end class Welcome3

Welcome
to
Java
Programming!

Notice how a new line is output for each \n
escape sequence.

18

Modifying Our First Java Program

Escape characters

– Backslash (\)

– Indicates special characters be output

Esc ape

sequenc e

Desc rip tion

\n Newline. Position the screen cursor at the beginning of the

next line.

\t Horizontal tab. Move the screen cursor to the next tab stop.

\r Carriage return. Position the screen cursor at the beginning of

the current line; do not advance to the next line. Any

characters output after the carriage return overwrite the

characters previously output on that line.

\\ Backslash. Used to print a backslash character.

\" Double quote. Used to print a double -quote character. For

exampl e,

System.out.println("\"in quotes \"");
displays

"in quotes"
Fig. 2.5 Some c ommon esc ape sequenc es.

19

Displaying Text in a Dialog Box

• Display

– Most Java applications use windows or a dialog box

• We have used command window

– Class JOptionPane allows us to use dialog boxes

• Packages

– Set of predefined classes for us to use

– Groups of related classes called packages

• Group of all packages known as Java class library or Java

applications programming interface (Java API)

– JOptionPane is in the javax.swing package

• Package has classes for using Graphical User Interfaces (GUIs)

20

Program Output

1 // Fig. 2.6: Welcome4.java

2 // Printing multiple lines in a dialog box.

3

4 // Java packages

5 import javax.swing.JOptionPane; // program uses JOptionPane

6

7 public class Welcome4 {

8

9 // main method begins execution of Java application

10 public static void main(String args[])

11 {

12 JOptionPane.showMessageDialog(

13 null, "Welcome\nto\nJava\nProgramming!");

14

15 System.exit(0); // terminate application with window

16

17 } // end method main

18

19 } // end class Welcome4

21

Displaying Text in a Dialog Box

– Lines 1-2: comments as before

– Two groups of packages in Java API

– Core packages

• Begin with java

• Included with Java 2 Software Development Kit

– Extension packages

• Begin with javax

• New Java packages

– import declarations

• Used by compiler to identify and locate classes used in Java
programs

• Tells compiler to load class JOptionPane from
javax.swing package

4 // Java packages

5 import javax.swing.JOptionPane; // program uses OptionPane

22

Displaying Text in a Dialog Box

– Lines 6-11: Blank line, begin class Welcome4 and main

– Call method showMessageDialog of class

JOptionPane

• Requires two arguments

• Multiple arguments separated by commas (,)

• For now, first argument always null

• Second argument is string to display

– showMessageDialog is a static method of class

JOptionPane

• static methods called using class name, dot (.) then method

name

12 JOptionPane.showMessageDialog(
13 null, "Welcome\nto\nJava\nProgramming!");

23

Displaying Text in a Dialog Box

– All statements end with ;

• A single statement can span multiple lines

• Cannot split statement in middle of identifier or string

– Executing lines 12 and 13 displays the dialog box

• Automatically includes an OK button

– Hides or dismisses dialog box

• Title bar has string Message

24

Displaying Text in a Dialog Box

– Calls static method exit of class System

• Terminates application

– Use with any application displaying a GUI

• Because method is static, needs class name and dot (.)

• Identifiers starting with capital letters usually class names

– Argument of 0 means application ended successfully

• Non-zero usually means an error occurred

– Class System part of package java.lang

• No import declaration needed

• java.lang automatically imported in every Java program

– Lines 17-19: Braces to end Welcome4 and main

15 System.exit(0); // terminate application with window

25

Another Java Application: Adding Integers

• Upcoming program

– Use input dialogs to input two values from user

– Use message dialog to display sum of the two values

26

Addition.java

1. import

2. class Addition

2.1 Declare variables

(name and type)

3.

showInputDialog

4. parseInt

5. Add numbers, put

result in sum

1 // Fig. 2.9: Addition.java

2 // Addition program that displays the sum of two numbers.

3

4 // Java packages

5 import javax.swing.JOptionPane; // program uses JOptionPane

6

7 public class Addition {

8

9 // main method begins execution of Java application

10 public static void main(String args[])

11 {

12 String firstNumber; // first string entered by user

13 String secondNumber; // second string entered by user

14

15 int number1; // first number to add

16 int number2; // second number to add

17 int sum; // sum of number1 and number2

18

19 // read in first number from user as a String

20 firstNumber = JOptionPane.showInputDialog("Enter first integer");

21

22 // read in second number from user as a String

23 secondNumber =

24 JOptionPane.showInputDialog("Enter second integer");

25

26 // convert numbers from type String to type int

27 number1 = Integer.parseInt(firstNumber);

28 number2 = Integer.parseInt(secondNumber);

29

30 // add numbers

31 sum = number1 + number2;

32

Declare variables: name and type.

Input first integer as a String, assign

to firstNumber.

Add, place result in sum.

Convert strings to integers.

27

Program output

33 // display result

34 JOptionPane.showMessageDialog(null, "The sum is " + sum,

35 "Results", JOptionPane.PLAIN_MESSAGE);

36

37 System.exit(0); // terminate application with window

38

39 } // end method main

40

41 } // end class Addition

28

Another Java Application: Adding Integers

– Location of JOptionPane for use in the program

– Begins public class Addition

• Recall that file name must be Addition.java

– Lines 10-11: main

– Declaration

• firstNumber and secondNumber are variables

5 import javax.swing.JOptionPane; // program uses JOptionPane

7 public class Addition {

12 String firstNumber; // first string entered by user
13 String secondNumber; // second string entered by user

29

Another Java Application: Adding Integers

– Variables

• Location in memory that stores a value

– Declare with name and type before use

• firstNumber and secondNumber are of type String
(package java.lang)

– Hold strings

• Variable name: any valid identifier

• Declarations end with semicolons ;

– Can declare multiple variables of the same type at a time

– Use comma separated list

– Can add comments to describe purpose of variables

String firstNumber, secondNumber;

12 String firstNumber; // first string entered by user
13 String secondNumber; // second string entered by user

30

Another Java Application: Adding Integers

– Declares variables number1, number2, and sum of type

int

• int holds integer values (whole numbers): i.e., 0, -4, 97

• Types float and double can hold decimal numbers

• Type char can hold a single character: i.e., x, $, \n, 7

• Primitive types - more in Chapter 4

15 int number1; // first number to add
16 int number2; // second number to add
17 int sum; // sum of number1 and number2

31

Another Java Application: Adding Integers

– Reads String from the user, representing the first number

to be added

• Method JOptionPane.showInputDialog displays the

following:

• Message called a prompt - directs user to perform an action

• Argument appears as prompt text

• If wrong type of data entered (non-integer) or click Cancel,

error occurs

20 firstNumber = JOptionPane.showInputDialog("Enter first integer");

32

Another Java Application: Adding Integers

– Result of call to showInputDialog given to

firstNumber using assignment operator =

• Assignment statement

• = binary operator - takes two operands

– Expression on right evaluated and assigned to variable on

left

• Read as: firstNumber gets value of

JOptionPane.showInputDialog("Enter first
integer")

20 firstNumber = JOptionPane.showInputDialog("Enter first integer");

33

Another Java Application: Adding Integers

– Similar to previous statement

• Assigns variable secondNumber to second integer input

– Method Integer.parseInt

• Converts String argument into an integer (type int)

– Class Integer in java.lang

• Integer returned by Integer.parseInt is assigned to

variable number1 (line 27)

– Remember that number1 was declared as type int

• Line 28 similar

23 secondNumber =
24 JOptionPane.showInputDialog("Enter second integer");

27 number1 = Integer.parseInt(firstNumber);
28 number2 = Integer.parseInt(secondNumber);

34

Another Java Application: Adding Integers

– Assignment statement

• Calculates sum of number1 and number2 (right hand side)

• Uses assignment operator = to assign result to variable sum

• Read as: sum gets the value of number1 + number2

• number1 and number2 are operands

31 sum = number1 + number2;

35

Another Java Application: Adding Integers

– Use showMessageDialog to display results

– "The sum is " + sum

• Uses the operator + to "add" the string literal "The sum is"
and sum

• Concatenation of a String and another type

– Results in a new string

• If sum contains 117, then "The sum is " + sum results in

the new string "The sum is 117"

• Note the space in "The sum is "

• More on strings in Chapter 11

34 JOptionPane.showMessageDialog(null, "The sum is " + sum,

35 "Results", JOptionPane.PLAIN_MESSAGE);

36

Another Java Application: Adding Integers

– Different version of showMessageDialog

• Requires four arguments (instead of two as before)

• First argument: null for now

• Second: string to display

• Third: string in title bar

• Fourth: type of message dialog with icon

– Line 35 no icon: JOptionPane.PLAIN_MESSAGE

34 JOptionPane.showMessageDialog(null, "The sum is " + sum,
35 "Results", JOptionPane.PLAIN_MESSAGE);

37

Another Java Application: Adding Integers

Message d ia log type Ic on Desc rip tion

JOptionPane.ERROR_MESSAGE

Displays a dialog that indicates an error
to the user.

JOptionPane.INFORMATION_MESSAGE

Displays a dialog with an informational
message to the user. The user can simply
dismiss the dialog.

JOptionPane.WARNING_MESSAGE

Displays a dialog that warns the user of a
potential problem.

JOptionPane.QUESTION_MESSAGE

Displays a dialog that poses a question to
the user. This dialog normally requires a

response, such as clicking on a Yes or a

No button.

JOptionPane.PLAIN_MESSAGE no icon Displays a dialog that simply contains a

message, with no icon.

Fig. 2.12 JOptionPane c onstants for message d ia logs.

38

Arithmetic

• Arithmetic calculations used in most programs

– Usage

• * for multiplication

• / for division

• +, -

– Integer division truncates remainder

7 / 5 evaluates to 1

– Remainder operator % returns the remainder

7 % 5 evaluates to 2

39

Arithmetic

• Operator precedence

– Some arithmetic operators act before others (i.e.,

multiplication before addition)

• Use parenthesis when needed

– Example: Find the average of three variables a, b and c

• Do not use: a + b + c / 3

• Use: (a + b + c) / 3

– Follows PEMDAS

• Parentheses, Exponents, Multiplication, Division, Addition,

Subtraction

40

Equality and Relational Operators

• if control statement

– Simple version in this section, more detail later

– If a condition is true, then the body of the if statement

executed

• 0 interpreted as false, non-zero is true

– Control always resumes after the if structure

– Conditions for if statements can be formed using equality

or relational operators (next slide)

if (condition)

statement executed if condition true

• No semicolon needed after condition

– Else conditional task not performed

41

Equality and Relational Operators

• Upcoming program uses if statements

– Discussion afterwards

Standard a lgebra ic
equa lity or
rela tiona l opera tor

Java equa lity
or rela tiona l
opera tor

Example
of Java
cond ition

Meaning of
Java cond ition

Equality operators

= == x == y x is equal to y

 != x != y x is not equal to y
Relational operators

> > x > y x is greater than y
< < x < y x is less than y

 >= x >= y x is greater than or equal to y

 <= x <= y x is less than or equal to y

Fig. 2.19 Equality and rela tiona l opera tors.

42

Comparison.java

1. import

2. Class

Comparison

2.1 main

2.2 Declarations

2.3 Input data

(showInputDialo
g)

2.4 parseInt

2.5 Initialize result

1 // Fig. 2.20: Comparison.java

2 // Compare integers using if statements, relational operators

3 // and equality operators.

4

5 // Java packages

6 import javax.swing.JOptionPane;

7

8 public class Comparison {

9

10 // main method begins execution of Java application

11 public static void main(String args[])

12 {

13 String firstNumber; // first string entered by user

14 String secondNumber; // second string entered by user

15 String result; // a string containing the output

16

17 int number1; // first number to compare

18 int number2; // second number to compare

19

20 // read first number from user as a string

21 firstNumber = JOptionPane.showInputDialog("Enter first integer:");

22

23 // read second number from user as a string

24 secondNumber =

25 JOptionPane.showInputDialog("Enter second integer:");

26

27 // convert numbers from type String to type int

28 number1 = Integer.parseInt(firstNumber);

29 number2 = Integer.parseInt(secondNumber);

30

31 // initialize result to empty String

32 result = "";

33

43

Comparison.java

3. if statements

4.

showMessageDialo
g

34 if (number1 == number2)

35 result = result + number1 + " == " + number2;

36

37 if (number1 != number2)

38 result = result + number1 + " != " + number2;

39

40 if (number1 < number2)

41 result = result + "\n" + number1 + " < " + number2;

42

43 if (number1 > number2)

44 result = result + "\n" + number1 + " > " + number2;

45

46 if (number1 <= number2)

47 result = result + "\n" + number1 + " <= " + number2;

48

49 if (number1 >= number2)

50 result = result + "\n" + number1 + " >= " + number2;

51

52 // Display results

53 JOptionPane.showMessageDialog(null, result, "Comparison Results",

54 JOptionPane.INFORMATION_MESSAGE);

55

56 System.exit(0); // terminate application

57

58 } // end method main

59

60 } // end class Comparison

Test for equality, create new string,

assign to result.

Notice use of

JOptionPane.INFORMATION_MESSAGE

44

Program Output

45

Equality and Relational Operators

• Precedence of operators

– All operators except for = (assignment) associates from left

to right

• For example: x = y = z is evaluated x = (y = z)

Operators Type
* / % multiplicative
+ - additive
< <= > >= relational
== != equality
= assignment

Features of Java

• Simple

• Architecture-neutral

• Object-Oriented

• Distributed

• Compiled

• Interpreted

• Statically Typed

• Multi-Threaded

• Garbage Collected

• Portable

• High-Performance

• Robust

• Secure

• Extensible

• Well-Understood

How Will Java Change My Life?

• Get started quickly

• Write less code

• Write better code

• Develop programs faster

• Avoid platform dependencies with 100% pure

Java

• Write once, run anywhere

• Distribute software more easily

Java Applications and Java …

lets
• Stand-alone Applications

– Just like any programming language

• Applet

– Run under a Java-Enabled Browser

• Midlet

– Run in a Java-Enabled Mobile Phone

• Servlet

– Run on a Java-Enabled Web Server

Java Developer's Kit (I)

• Java's programming environment

– Core Java API

– compiler

– interpreter

– debugger

– dis-assembler

– profiler

– more...

Write Once, Run Anywhere

ByteCode: Food for the VM

• For most languages, compilation produces
machine code

• Java compilation produces “bytecode”
– Intermediate code readable by the VM

– Transferable across the Internet as applets

• VM interprets BC into instructions

• ByteCode produced on any platform may be
executed on any other platform which supports a
VM

virtual machine

execution model of Java

source

(text)
compiler

CPU

bytecode

interpreter

dynamic

loading

JIT

compiler

compiled

code

verifier

bytecode

(aka. class file)

The JIT

• Just-In-Time compiler

• Translates bytecode into machine code at runtime

– Performance increase 10-30 times

• Now the default for most JVM’s

– Can be turned off if desired

– JIT can apply statistical optimizations based on runtime

usage profile

