4. Relations and Digraphs

Representing Relations Using Digraphs

•Example: Display the digraph with V = {a, b, c, d}, E = {(a, b), (a, d), (b, b), (b, d), (c, a), (c, b), (d, b)}.

An edge of the form (b, b) is called a loop.

4.4 Properties of Relations

Reflexive Property of a Relation

Definition:

A relation *R* on a set *A* is called *reflexive* if $(a, a) \in R$ for every element $a \in A$.

Example 4.6-1 Consider the following relations on A={1,2,3,4}. Which of these relations are reflexive?

$R_1 = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)\}$

Not reflexive because $3 \in A$ but (3,3) $\notin R_1$

 $R_2 = \{(1, 1), (1, 2), (2, 1)\}$ Not reflexive because, say, $4 \in A$ but $(4, 4) \notin R_2$

 $R_{3} = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)\}$ Reflexive $R_4 = \{(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)\}$ Not reflexive - (1, 1)? $R_5 = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3$ (2, 4), (3, 3), (3, 4), (4, 4)**Reflexive - Why?** $R_6 = \{(3, 4)\}$ **Not Reflexive - Why ?**

Examples 1- c

(c) Let A = {1, 2, 3}, and let R = {(1, 1), (1, 2)}. Then R is not reflexive since (2, 2) ∉ R and (3, 3) ∉ R. Also, R is not irreflexive, since (1, 1) ∈ R.

Symmetric Property of a Relation

Definitions:

A relation *R* on a set *A* is called symmetric if for all $a, b \in A$, $(a, b) \in R$ implies $(b, a) \in R$.

A relation *R* on a set *A* is called *antisymmetric* if for all $a, b \in A$, $(a, b) \in R$ and $(b, a) \in R$ implies a = b.

Example 4.6-2 Which of the relations are symmetric and which are antisymmetric?

 $R_1 = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)\}$ Not symmetric -(3, 4) but there is no (4, 3)Not antisymmetric - (1, 2) & (2, 1) but $1 \neq 2$ $R_2 = \{(1, 1), (1, 2), (2, 1)\}$ **Symmetric** Not antisymmetric - (1, 2) & (2, 1) but $1 \neq 2$ $R_3 = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)\}$ **Symmetric** Not antisymmetric - (1, 4) & (4, 1) but $1 \neq 4$

 $R_4 = \{(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)\}$ Not symmetric - (2, 1) but no (1, 2) **Antisymmetric** $R_5 = \{ (1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), \}$ $(3, 3), (3, 4), (4, 4) \}$ Not symmetric - (1, 3) but no (3, 1) Antisymmetric $R_6 = \{(3, 4)\}$ Not symmetric - (3, 4) but no (4, 3) **Antisymmetric**

Example 4 Let $A = \{1, 2, 3, 4\}$ and let

 $R = \{(1,2), (2,2), (3,4), (4,1)\}.$

Then R is not symmetric, since $(1, 2) \in R$, but $(2, 1) \notin R$. Also, R is not asymmetric, since $(2, 2) \in R$. Finally, R is antisymmetric, since if $a \neq b$, either $(a, b) \notin R$ or $(b, a) \notin R$.

Transitive Property of a Relation

Definition:

A relation R on a set A is called *transitive* if whenever $(a, b) \in R$ and $(b, c) \in R$ then $(a, c) \in R$, for $a, b, c \in A$.

Example : Which of the following relations are transitive?

 $R_1 = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)\}$ Not transitive because

- (3, 4) & $(4, 1) \in R_1$ but $(3, 1) \notin R_1$

 $R_2 = \{(1, 1), (1, 2), (2, 1)\}$ Not transitive because $-(2, 1) \& (1, 2) \in R_2$ but $(2, 2) \notin R_2$ $R_3 = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)\}$ Not transitive - (4, 1) & (1, 2) $\in R_3$ but (4, 2) $\notin R_3$ $R_4 = \{(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)\}$ Transitive $R_5 = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (2, 4), (3, 3$ (3, 4), (4, 4)

Transitive

Example 10 Let $A = \{1, 2, 3, 4\}$ and let

$$R = \{(1, 2), (1, 3), (4, 2)\}.$$

Is R transitive?

Solution

Since there are no elements a, b, and c in A such that a R b and b R c, but a \mathbb{R} c, we conclude that R is transitive.

۶

4.5 Equivalence Relations

Equivalence Relations

•Equivalence relations are used to relate objects that are similar in some way.

•**Definition:** A relation on a set A is called an equivalence relation if it is reflexive, symmetric, and transitive.

•Two elements that are related by an equivalence relation R are called **equivalent**.

Equivalence Relations

•Since R is **symmetric**, a is equivalent to b whenever b is equivalent to a.

•Since R is **reflexive**, every element is equivalent to itself.

•Since R is transitive, if a and b are equivalent and b and c are equivalent, then a and c are equivalent.

•Obviously, these three properties are necessary for a reasonable definition of equivalence.

Section 4.5: Examples 2

4.7 Operations on Relations

Combining Relations

•Relations are sets, and therefore, we can apply the usual **set operations** to them.

•If we have two relations R_1 and R_2 , and both of them are from a set A to a set B, then we can combine them to $R_1 \cup R_2$, $R_1 \cap R_2$, or $R_1 - R_2$.

 In each case, the result will be another relation from A to B.

Example Let $R_1 = \{(1, 1), (2, 2), (3, 3)\}$ and $R_2 = \{(1, 1), (1, 2), (1, 3), (1, 4)\}$

then :

 $R_1 \cup R_2 = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (3, 3)\}$

 $R_1 \cap R_2 = \{(1, 1)\}$

 $R_1 \setminus R_2 = \{(2, 2), (3, 3)\}$

 $R_2 \setminus R_1 = \{(1, 2), (1, 3), (1, 4)\}$

Example 1 Let $A = \{1, 2, 3, 4\}$ and $B = \{a, b, c\}$. Let $R = \{(1, a), (1, b), (2, b), (2, c), (3, b), (4, a)\}$ and $S = \{(1, b), (2, c), (3, b), (4, b)\}.$ Compute (a) \overline{R} ; (b) $R \cap S$; (c) $R \cup S$; and (d) R^{-1} .

Solution

(a) We first find

$$A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c), (3, a), (3, b), (3, c), (4, a), (4, b), (4, c)\}.$$

Then the complement of R in $A \times B$ is

 $\overline{R} = \{(1, c), (2, a), (3, a), (3, c), (4, b), (4, c)\}.$

(b) We have $R \cap S = \{(1, b), (3, b), (2, c)\}$. (c) We have

 $R \cup S = \{(1, a), (1, b), (2, b), (2, c), (3, b), (4, a), (4, b)\}.$

(d) Since $(x, y) \in R^{-1}$ if and only if $(y, x) \in R$, we have

 $R^{-1} = \{(a, 1), (b, 1), (b, 2), (c, 2), (b, 3), (a, 4)\}.$

Example 4 Let $A = \{1, 2, 3\}$ and let R and S be relations on A. Suppose that the matrices of R and S are $\mathbf{M}_{R} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \quad \text{and} \quad \mathbf{M}_{S} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}.$ Then we can verify that $\mathbf{M}_{\overline{R}} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}, \qquad \mathbf{M}_{R^{-1}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix},$ $\mathbf{M}_{R\cap S} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \qquad \mathbf{M}_{R\cup S} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$

Example 5 Let $A = \{1, 2, 3\}$ and consider the two reflexive relations

 $R = \{(1, 1), (1, 2), (1, 3), (2, 2), (3, 3)\}$

and

 $S = \{(1, 1), (1, 2), (2, 2), (3, 2), (3, 3)\}.$

Then

(a) R⁻¹ = {(1, 1), (2, 1), (3, 1), (2, 2), (3, 3)}; R and R⁻¹ are both reflexive.
(b) R
= {(2, 1), (2, 3), (3, 1), (3, 2)} is irreflexive while R is reflexive.
(c) R ∩ S = {(1, 1), (1, 2), (2, 2), (3, 3)} and R ∪ S = {(1, 1), (1, 2), (1, 3), (2, 2), (3, 2), (3, 2), (3, 3)} are both reflexive.

Example 6 Let $A = \{1, 2, 3\}$ and consider the symmetric relations

$$R = \{(1, 1), (1, 2), (2, 1), (1, 3), (3, 1)\}$$

and

$$S = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)\}.$$

Then

- (a) $R^{-1} = \{(1, 1), (2, 1), (1, 2), (3, 1), (1, 3)\}$ and $\overline{R} = \{(2, 2), (2, 3), (3, 2), (3, 3)\}; R^{-1}$ and \overline{R} are symmetric.
- (b) $R \cap S = \{(1, 1), (1, 2), (2, 1)\}$ and $R \cup S = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1), (3, 3)\}$, which are both symmetric.

Example 10 Let
$$A = \{1, 2, 3, 4\}, R = \{(1, 2), (1, 1), (1, 3), (2, 4), (3, 2)\}, \text{ and } S = \{(1, 4), (1, 3), (2, 3), (2, 3), (3, 1), (4, 1)\}.$$
 Since $(1, 2) \in R$ and $(2, 3) \in S$, we must have $(1, 3) \in S \circ R$. Similarly, since $(1, 1) \in R$ and $(1, 4) \in S$, we see that $(1, 4) \in S \circ R$. $(1, 3) \in S \circ R$. Similarly, since $(1, 1) \in R$ and $(1, 4) \in S$, we see that $(1, 4) \in S \circ R$. Proceeding in this way, we find that $S \circ R = \{(1, 4), (1, 3), (1, 1), (2, 1), (3, 3)\}$.

matrix method is much more reliable.

Example 13 Let $A = \{a, b\}, R = \{(a, a), (b, a), (b, b)\}$, and $S = \{(a, b), (b, a), (b, b)\}$. Then $S \circ R = \{(a, b), (b, a), (b, b)\}$, while $R \circ S = \{(a, a), (a, b), (b, a), (b, b)\}$.