4. Relations and Digraphs

Representing Relations Using Digraphs

-Example: Display the digraph with $\mathrm{V}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$, $E=\{(a, b),(a, d),(b, b),(b, d),(c, a),(c, b),(d, b)\}$.

An edge of the form (b, b) is called a loop.

4.4 Properties of Relations

Reflexive Property of a Relation

Definition:

A relation R on a set A is called reflexive
if $(a, a) \in R$ for every element $a \in A$.

Example 4.6-1 Consider the following relations on $A=\{1,2,3,4\}$. Which of these relations are reflexive?

$$
\begin{aligned}
& R_{1}=\{(1,1),(1,2),(2,1),(2,2),(3,4),(4,1),(4, \\
& 4)\}
\end{aligned}
$$

Not reflexive because $3 \in A$ but $(3,3) \notin R_{1}$

$$
R_{2}=\{(1,1),(1,2),(2,1)\}
$$

Not reflexive because, say, $4 \in A$ but $(4,4) \notin$ R_{2}

$$
\begin{aligned}
R_{3}=\{ & \{(1,1),(1,2),(1,4),(2,1),(2,2),(3,3), \\
& (4,1),(4,4)\} \\
& \text { Reflexive }
\end{aligned}
$$

$$
\begin{gathered}
R_{4}=\{(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)\} \\
\text { Not reflexive }-(1,1) ? \\
R_{5}=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3), \\
\\
(2,4),(3,3),(3,4),(4,4)\} \\
\text { Reflexive - Why ? } \\
R_{6}=\{(3,4)\} \\
\text { Not Reflexive - Why? }
\end{gathered}
$$

Examples 1-c

(c) $\operatorname{Let} A=\{1,2,3\}$, and let $R=\{(1,1),(1,2)\}$. Then R is not refexivive since $(2,2) \notin R$ and $(3,3) \notin R$. Also, R is not irrefexive, since $(1,1) \dot{\in} R$.

Symmetric Property of a Relation

Definitions:

A relation R on a set A is called symmetric if for all $a, b \in A,(a, b) \in R$ implies $(b, a) \in R$.

A relation R on a set \boldsymbol{A} is called antisymmetric if for all $a, b \in A$,
$(a, b) \in R$ and $(b, a) \in R$ implies $a=b$.

Example 4.6-2 Which of the relations are

 symmetric and which are antisymmetric?$$
R_{1}=\{(1,1),(1,2),(2,1),(2,2),(3,4),(4,1),(4,4)\}
$$

Not symmetric - $(3,4)$ but there is no $(4,3)$
Not antisymmetric - $(1,2) \&(2,1)$ but $1 \neq 2$
$R_{2}=\{(1,1),(1,2),(2,1)\}$
Symmetric
Not antisymmetric - $(1,2) \&(2,1)$ but $1 \neq 2$
$R_{3}=\{(1,1),(1,2),(1,4),(2,1),(2,2),(3,3),(4,1),(4,4)\}$
Symmetric
Not antisymmetric - $(1,4) \&(4,1)$ but $1 \neq 4$
$R_{4}=\{(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)\}$
Not symmetric - $(2,1)$ but no $(1,2)$
Antisymmetric
$R_{5}=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4)$,
$(3,3),(3,4),(4,4)\}$
Not symmetric - $(1,3)$ but no $(3,1)$
Antisymmetric
$R_{6}=\{(3,4)\}$
Not symmetric - $(3,4)$ but no $(4,3)$
Antisymmetric

Examples 4

Example 4 Let $A=(1,2,3,4)$ and let

$$
R=\{(1,2),(2,2),(3,4),(4,1)) .
$$

Then R is not symmetric, since $(1,2) \in R$, but $(2, I) \notin R$. Also, R is not asymmetric, since $(2,2) \in R$. Finally, R is antisymmetric, since if $a \neq b$, either $(a, b) \notin R o r(b, a) \& R$.

Transitive Property of a Relation

Definition:
A relation \boldsymbol{R} on a set \boldsymbol{A} is called transitive if whenever $(a, b) \in R$ and $(b, c) \in R$ then
$(a, c) \in R$, for $a, b, c \in A$.
Example : Which of the following relations are transitive?

$$
\begin{aligned}
R_{1}= & \{(1,1),(1,2),(\mathbf{2}, \mathbf{1}),(\mathbf{2}, \mathbf{2}),(3,4),(4,1),(4,4)\} \\
& \text { Not transitive because } \\
& -(3,4) \&(4,1) \in R_{1} \text { but }(\mathbf{3}, 1) \notin R_{1}
\end{aligned}
$$

$$
\begin{aligned}
R_{2}= & \{(1,1),(1,2),(2,1)\} \\
& \text { Not transitive because } \\
& -(2,1) \&(1,2) \in R_{2} \text { but }(2,2) \notin R_{2} \\
R_{3}= & \{(1,1),(1,2),(1,4),(2,1),(2,2),(3,3),(4,1),(4,4)\} \\
& \text { } \operatorname{} \text { ot transitive } \\
& -(4,1) \&(1,2) \in R_{3} \text { but }(4,2) \notin R_{3} \\
R_{4}= & \{(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)\} \\
& \text { }(r a n s i t i v e \\
R_{5}= & \{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3), \\
& (3,4),(4,4)\} \\
& \text { Transitive }
\end{aligned}
$$

Examples 10

Example 10 Let $A=\{1,2,3,4\}$ and let

$$
R=\{(1,2),(1,3),(4,2)\}
$$

Is R transitive?

Solution

Since there are no elements a, b, and c in A such that $a R b$ and $b R c$, but $a R c$, we conclude that R is transitive.

4.5 Equivalence Relations

Equivalence Relations

-Equivalence relations are used to relate objects that are similar in some way.
-Definition: A relation on a set A is called an equivalence relation if it is reflexive, symmetric, and transitive.
-Two elements that are related by an equivalence relation R are called equivalent.

Equivalence Relations

- Since R is symmetric, a is equivalent to b whenever b is equivalent to a.
-Since R is reflexive, every element is equivalent to itself.
- Since R is transitive, if a and b are equivalent and b and c are equivalent, then a and c are equivalent.
-Obviously, these three properties are necessary for a reasonable definition of equivalence.

Section 4.5: Examples 2

Example 2 Let $A=\{1,2,3,4\}$ and let

$$
R=\{(1,1),(1,2),(2,1),(2,2),(3,4),(4,3),(3,3),(4,4)\} .
$$

It is easy to verify that R is an equivalence relation.

4.7 Operations on Relations

Combining Relations

-Relations are sets, and therefore, we can apply the usual set operations to them.

- If we have two relations R_{1} and R_{2}, and both of them are from a set A to a set B, then we can combine them to $R_{1} \cup R_{2}, R_{1} \cap R_{2}$, or $R_{1}-R_{2}$.
-In each case, the result will be another relation from A to B.

Example

Let $\quad \boldsymbol{R}_{1}=\{(1,1),(2,2),(3,3)\}$ and

$$
\boldsymbol{R}_{\mathbf{2}}=\{(1,1),(1,2),(1,3),(1,4)\}
$$

then :
$R_{1} \cup R_{2}=\{(1,1),(1,2),(1,3),(1,4),(2,2),(3$, 3) $\}$
$R_{1} \cap R_{2}=\{(1,1)\}$
$R_{1} \backslash R_{2}=\{(2,2),(3,3)\}$
$R_{2} \backslash R_{1}=\{(1,2),(1,3),(1,4)\}$

Example 1

Excmple 1 Let $A=\{1,2,3,4\}$ and $B=\{a, b, c\}$. Let

$$
R=\{(1, a),(1, b),(2, b),(2, c),(3, b),(4, a)\}
$$

and

$$
S=\{(1, b),(2, c),(3, b),(4, b)\} .
$$

Compute (a) \bar{R}; (b) $R \cap S$; (c) $R \cup S$; and (d) R^{-1}.

Solution

(a) We first find

$$
\begin{aligned}
A \times B= & \{(1, a),(1, b),(1, c),(2, a),(2, b),(2, c),(3, a) \\
& (3, b),(3, c),(4, a),(4, b),(4, c)\}
\end{aligned}
$$

Then the complement of R in $A \times B$ is

$$
\bar{R}=\{(1, c),(2, a),(3, a),(3, c),(4, b),(4, c)\} .
$$

(b) We have $R \cap S=\{(1, b),(3, b),(2, c)\}$.
(c) We have

$$
R \cup S=\{(1, a),(1, b),(2, b),(2, c),(3, b),(4, a),(4, b)\}
$$

(d) Since $(x, y) \in R^{-1}$ if and only if $(y, x) \in R$, we have

$$
R^{-1}=\{(a, 1),(b, 1),(b, 2),(c, 2),(b, 3),(a, 4)\}
$$

Example 3

Example 3 Let $A=\{a, b, c, d, e\}$ and let R and S be two relations on A whose corresponding digraphs are shown in Figure 4.38. Then the reader can verify the following facts:

$$
\begin{aligned}
\bar{R}= & \{(a, a),(b, b),(a, c),(b, a),(c, b),(c, d),(c, e),(c, a),(d, b), \\
& (d, a),(d, e),(e, b),(e, a),(e, d),(e, c)\} \\
R^{-1}= & \{(b, a),(e, b),(c, c),(c, d),(d, d),(d, b),(c, b),(d, a),(e, e),(e, a)\} \\
R \cap S= & \{(a, b),(b, e),(c, c)\}
\end{aligned}
$$

R

Example 4

Example 4 Let $A=\{1,2,3)$ and let R and S be relations on A. Suppose that the matrices of R and S are

$$
\mathbf{M}_{R}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] \text { and } \quad \mathbf{M}_{S}=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

Then we can verify that

$$
\begin{aligned}
\mathbf{M}_{\bar{R}}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 1
\end{array}\right], & \mathbf{M}_{R^{-1}}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right], \\
\mathbf{M}_{R \cap S}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right], & \mathbf{M}_{\text {RUS }}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
0 & 1 & 0
\end{array}\right] .
\end{aligned}
$$

Example 5

Example 5 Let $A=\{1,2,3\}$ and consider the two reflexive relations

$$
R=\{(1,1),(1,2),(1,3),(2,2),(3,3)\}
$$

and

$$
S=\{(1,1),(1,2),(2,2),(3,2),(3,3)\} .
$$

Then
(a) $R^{-1}=\{(1,1),(2,1),(3,1),(2,2),(3,3)\} ; R$ and R^{-1} are both reflexive.
(b) $\bar{R}=\{(2,1),(2,3),(3,1),(3,2)\}$ is irreflexive while R is reflexive.
(c) $R \cap S=\{(1,1),(1,2),(2,2),(3,3)\}$ and $R \cup S=\{(1,1),(1,2),(1,3)$, $(2,2),(3,2),(3,3)\}$ are both reflexive.

Example 6

Example 6 Let $A=\{1,2,3\}$ and consider the symmetric relations

$$
R=\{(1,1),(1,2),(2,1),(1,3),(3,1)\}
$$

and

$$
S=\{(1,1),(1,2),(2,1),(2,2),(3,3)\}
$$

Then
(a) $R^{-1}=\{(1,1),(2,1),(1,2),(3,1),(1,3)\}$ and $\bar{R}=\{(2,2),(2,3),(3,2)$, $(3,3) ; R^{-1}$ and \bar{R} are symmetric.
(b) $R \cap S=\{(1,1),(1,2),(2,1)\}$ and $R \cup S=\{(1,1),(1,2),(1,3),(2,1)$, $(2,2),(3,1),(3,3)\}$, which are both symmetric.

Example 10

Example 10 Let $A=\{1,2,3,4\}, R=\{(1,2),(1,1),(1,3),(2,4),(3,2)\}$, and $S=\{(1,4)$, $(1,3),(2,3),(3,1),(4,1))$. Since $(1,2) \in R$ and $(2,3) \in S$, we must have $(1,3) \in S \circ R$. Similarly, since $(1,1) \in R$ and $(1,4) \in S$, we see that $(1,4) \in S \circ R$. Proceeding in this way, we find that $S \circ R=\{(1,4),(1,3),(1,1),(2,1),(3,3)\}$.

Example 12

Example 12 Let us redo Example 10 using matrices. We see that

$$
\mathbf{M}_{R}=\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \text { and } \mathbf{M}_{S}=\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

Then

$$
\mathbf{M}_{R} \odot \mathbf{M}_{S}=\left[\begin{array}{rrrr}
1 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 \\
-0 & 0 & -1 & -0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

so

$$
S \circ R=\{(1,1),(1,3),(1,4),(2,1),(3,3)\}
$$

as we found before. In cases where the number of pairs in R and S is large, the matrix method is much more reliable.

Example 13

Example 13 Let $A=\{a, b\}, R=\{(a, a),(b, a),(b, b)\}$, and $S=\{(a, b),(b, a),(b, b)\}$. Then $S \circ R=\{(a, b),(b, a),(b, b)\}$, while $R \circ S=\{(a, a),(a, b),(b, a),(b, b)\}$.

