4. Relations and Digraphs

Product Sets

- An ordered pair (a, b) is a listing of the objects a and b in a prescribed order.
- If A and B are two nonempty sets, the product set or Cartesian product $\mathrm{A} \times \mathrm{B}$ is the set of all ordered pairs (a, b) with $a \in A, b \in B$.
Theorem 1. For any two finite, nonempty sets A and $B,|A \times B|=|A||B|$
- Cartesian product of the nonempty sets $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{m}}$ is the set of all ordered m-tuples $\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ where $a_{i} \in A_{i}, i=1,2, \ldots, m$. $A_{1} \times A_{2} \times \ldots \times A_{m}=\left\{\left(a_{1}, a_{2}, \ldots, a_{m}\right) \mid a_{i} \in A_{i}, i=1,2, \ldots, m\right\}$

Relations

- Let A and B be nonempty sets, a relation R from A to B is a subset of $A \times B$. If $(a, b) \in R$, then a is related to b by R and $a R b$.
- If $R \subseteq \mathrm{~A} \times \mathrm{A}, R$ is a relation on A .
- The domain of $R, \operatorname{Dom}(R)$, is the set of elements in A that are related to some elements in B.
- The range of $\mathrm{R}, \operatorname{Ran}(R)$, is the set of elements in B that are related to some elements in A.
- $R(x)$ is defined as the \boldsymbol{R}-relative set of \boldsymbol{x}, where $x \in \mathrm{~A}, R(x)=\{y \in \mathrm{~B} \mid x R y\}$
- $R\left(\mathrm{~A}_{1}\right)$ is defined as the R-relative set of A_{1}, where $\mathrm{A}_{1} \subseteq \mathrm{~A}, R\left(\mathrm{~A}_{1}\right)=\left\{y \in \mathrm{~B} \mid x R y\right.$ for some x in $\left.\mathrm{A}_{1}\right\}$

Relations

Theorem 1. Let R be a relation from A to B, and let A_{1} and A_{2} be subsets of A. Then (a) If $A_{1} \subseteq A_{2}$, then $R\left(A_{1}\right) \subseteq R\left(A_{2}\right)$.
(b) $R\left(A_{1} \cup A_{2}\right)=R\left(A_{1}\right) \cup R\left(A_{2}\right)$.
(c) $R\left(A_{1} \cap A_{2}\right) \subseteq R\left(A_{1}\right) \cap R\left(A_{2}\right)$.

Theorem 2. Let R and S be relations form A to B. If $R(a)=S(a)$ for all a in A, then $R=S$.

The Matrix of a Relation

If A and B are finites sets containing m and n elements, respectively, and R is a relation from A to B , represent R by the $m \times n$ matrix $\mathrm{M}_{R}=\left[m_{i j}\right]$, where $m_{i j}=1$ if $\left(a_{i}, b_{j}\right) \in R ; m_{i j}=0$ if $\left(a_{i}, b_{j}\right) \notin R$.
M_{R} is called the matrix of R.

- Conversely, given sets A and B with $|\mathrm{A}|=m$ and $|\mathrm{B}|=n$, an $m \times n$ matrix whose entries are zeros and ones determines a relation: $\left(a_{i j}, b_{j}\right) \in R$ if and only if $m_{i j}=1$.

The Digraph of a Relation

- Draw circles called vertices for elements of A, and draw arrows called edges from vertex a_{i} to vertex a_{j} if and only if $a_{i} R a_{j}$.
- The pictorial representation of R is called a directed graph or digraph of R.
- A collection of vertices and edges in a digraph determines a relation
- If R is a relation on A and $a \in \mathrm{~A}$, then the in-degree of a is the number of $b \in \mathrm{~A}$ such that $(b, a) \in R$; the outdegree of a is the number of $b \in A$ such that $(a, b) \in R$, the out-degree of a is $|R(a)|$
- The sum of all in-degrees in a digraph equals the sum of all out-degrees.
- If R is a relation on A, and B is a subset of A, the restriction of \boldsymbol{R} to \mathbf{B} is $R \cap(\mathrm{~B} \times \mathrm{B})$.

4.1Product sets and partitions

Relations on a Set

-Definition: A relation on the set A is a relation from A to A.

- In other words, a relation on the set A is a subset of $A \times A$.
-Example: Let $A=\{1,2,3,4\}$. Which ordered pairs are in the relation $R=\{(a, b) \mid a<b\}$?

Relations on a Set

-Solution: $R=(1,2)$,
$(1,3), \quad(1,4)$,
$(2,3)$,
$(2,4)$,
$(3,4)$ \}

R	1	2	3	4
1		x	x	x
2			x	x
3				x
4				
4				

Example 1 Let

$$
A=\{1,2,3\} \text { and } B=\{r, s\} ;
$$

then

$$
A \times B=\{(1, r),(1, s),(2, r),(2, s),(3, r),(3, s)\}
$$

Observe that the elements of $A \times B$ can be arranged in a convenient tabular ammy as shown in Figure 4.1.

Example 2 If A and B are as in Example 1, then

$$
B \times A=\{(r, 1),(s, 1),(r, 2),(s, 2),(r, 3),(s, 3)\} .
$$

Partitions

- A partition or quotient set of a nonempty set A is a collection \mathscr{P} of nonempty subsets of A such that
- Each element of A belongs to one of the sets in P.
- If A_{1} and A_{2} are distinct elements of \mathscr{P}, then $A_{1} \cap A_{2}=\phi$.
- The sets in P are called the blocks or cells of the partition
- The members of a partition of a set A are subsets of A
- A partition is a subset of $P(A)$, the power set of A
- Partitions can be considered as particular kinds of subsets of $P(A)$

Partitions

A partition or quotient set of a nonempty set A is a collection \mathscr{P} of nonen subsets of A such that

1. Each element of A belongs to one of the sets in \mathscr{P}.
2. If A_{1} and A_{2} are distinct elements of \mathscr{P}, then $A_{1} \cap A_{2}=\varnothing$.

The sets in \mathscr{P} are called the blocks or cells of the partition. Figure 4.2 sime a partition $\mathscr{P}=\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}, A_{7}\right\}$ of A into seven blocks.

Example 6 Let $A=\{a, b, c, d, e, f, g, h\}$. Consider the following subsets of A :

$$
\begin{gathered}
A_{1}=\{a, b, c, d\}, \quad A_{2}=\{a, c, e, f, g, h\}, \quad A_{3}=\{a, c, e, g\}, \\
A_{4}=\{b, d\}, \quad A_{5}=\{f, h\} .
\end{gathered}
$$

Then $\left\{A_{1}, A_{2}\right\}$ is not a partition since $A_{1} \cap A_{2} \neq \varnothing$. Also, $\left(A_{1}, A_{5}\right\}$ is not partition since $e \notin A_{1}$ and $e \notin A_{5}$. The collection $\mathscr{P}=\left\{A_{3}, A_{4}, A_{5}\right\}$ is a partil

4.2 Relations and diagraphs

Representing Relations Using Digraphs

 - Example: Display the digraph with $\mathrm{V}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$, $E=\{(a, b),(a, d),(b, b),(b, d),(c, a),(c, b),(d, b)\}$.

An edge of the form (b, b) is called a loop.

$$
\begin{aligned}
& \text { Let } A=\{1,2,3\} \text { and } B=\{r, s\} \text {. Then } R=\{(1, r),(2, s),(3, r)\} \text { is a relation } \\
& \text { from } A \text { to } B .
\end{aligned}
$$

Excimple 2 Let A and B be sets of real numbers. We define the following relation R (equals)

$$
a R b \text { if and only if } a=b \text {. }
$$

Example 3 Let $A=\{1,2,3,4,5\}$. Define the following relation R (less than) on A :

$$
\text { - } \quad a R b \text { if and only if } a<b \text {. }
$$

Then

$$
R=\{(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)\}
$$

Example 4 Let $A=\mathbb{Z}^{+}$, the set of all positive integers. Define the following relation R on A :

$$
a R b \text { if and only if } a \text { divides } b \text {. }
$$

Then $4 R 12$, but $5 R 7$.

Example 10 If R is the relation defined in Example 1 , then $\operatorname{Dom}(R)=A$ and $\operatorname{Ran}(R)=B$.
Example 11 If R is the relation given in Example 3, then $\operatorname{Dom}(R)=\{1,2,3,4\}$ and $\operatorname{Ran}(R)=$ $\{2,3,4,5\}$.

Example 18 Consider the matrix

$$
\mathbf{M}=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0
\end{array}\right]
$$

Since M is 3×4, we let

$$
A=\left\{a_{1}, a_{2}, a_{3}\right\} \text { and } B=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\} .
$$

Then $\left(a_{i}, b_{j}\right) \in R$ if and only if $m_{i j}=1$. Thus

$$
R=\left\{\left(a_{1}, b_{1}\right),\left(a_{1}, b_{4}\right),\left(a_{2}, b_{2}\right),\left(a_{2}, b_{3}\right),\left(a_{3}, b_{1}\right),\left(a_{3}, b_{3}\right)\right\} .
$$

igure 4.4

Example 19 Let

$$
\begin{aligned}
& A=\{1,2,3,4\} \\
& R=\{(1,1),(1,2),(2,1),(2,2),(2,3),(2,4),(3,4),(4,1)\} .
\end{aligned}
$$

Then the digraph of R is as shown in Figure 4.4.
A collection of vertices with edges between some of the vertices determines a relation in a natural manner.

Example 22 Let $A=\{a, b, c, d\}$, and let R be the relation on A that has the matrix

$$
\mathbf{M}_{R}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

Construct the digraph of R, and list in-degrees and out-degrees of all vertices

figure 4.6

degree 2 , wate

Solution

The digraph of R is shown in Figure 4.6. The following table gives the in-depres and out-degrees of all vertices. Note that the sum of all in-degrees must equal iti sum of all out-degrees.

In-degree	b	d	
	2	3	1

Example 23 Let $A=(1,4,5)$, and let R be given by the digraph shown in Figure 4.7. Fiof M_{R} and R.

Figure 4.7

Solution

$$
\mathbf{M}_{R}=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right], \quad R=\{(1,4),(1,5),(4,1),(4,4),(5,4),(5,5)\}
$$

If R is a relation on a set A, and B is a subset of A, the restriction of R to B is $R \cap(B \times B)$.
4.3 Paths in Relations and diagraphs

Paths in Relations and Digraphs

- A path of length \boldsymbol{n} in R from a to b is a finite sequence π : $a, x_{1}, x_{2}, \ldots, x_{n-1}, b$ such that $a R x_{1}, x_{1} R x_{2}, \ldots, x_{n-1} R b$ where x_{i} are elements of A
- A path that begins and ends at the same vertex is called a cycle
- the paths of length 1 can be identified with the ordered pairs (x, y) that belong to R
- $\boldsymbol{x} \boldsymbol{R}^{n} \boldsymbol{y}$ means that there is a path of length n from x to y in $\mathrm{R} ; \boldsymbol{R}^{\boldsymbol{n}}(\boldsymbol{x})$ consists of all vertices that can be reached from x by some path in R of length n
- $\boldsymbol{x} \boldsymbol{R}^{\infty} \boldsymbol{y}$ means that there is some path from x to y in R , the length will depend on x and $y ; R^{\infty}$ is sometimes called the connectivity relation for R
- $\boldsymbol{R}^{\infty}(\boldsymbol{x})$ consists of all vertices that can be reached from x by some path in R

Paths in Relations and Digraphs

- If $|R|$ is large, M_{R} can be used to compute R^{∞} and R^{2} efficiently
Theorem1 If R is a relation on $A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$, then

$$
\mathrm{M}_{R^{2}}=\mathrm{M}_{R} \odot \mathrm{M}_{R}
$$

Theorem2 For $n \geq 2$, and R a relation on a finite set A, we have $\mathrm{M}_{R^{\prime}}=\mathrm{M}_{R} \odot \mathrm{M}_{R} \odot \ldots \odot \mathrm{M}_{R}$ (n factors)

- The reachability relation R^{*} of a relation R on a set A that has n elements is defined as follows: $x R^{*} y$ means that $x=y$ or $x R^{\infty} y$
- Let $\pi_{1}: a, x_{1}, x_{2}, \ldots, x_{n-1}, b$ be a path in a relation R of length n from a to b, and let $\pi_{2}: b, y_{1}, y_{2}, \ldots, y_{m-1}, c$ be a path in R of length m from b to c, then the composition of π_{1} and π_{2} is the path of length $n+m$ from a to c, which is denoted by
$\pi_{2} \circ \pi_{1}$

4.3 Paths in Relations and Digraphs

Suppose that R is a relation on a set A. A path of length n in R from a to b is a finite sequence $\pi: a, x_{1}, x_{2}, \ldots, x_{n-1}, b$, beginning with a and ending with b, such that

$$
a R x_{1}, x_{1} R x_{2}, \ldots, x_{n-1} R b
$$

Note that a path of length n involves $n+1$ elements of A, although they are nof necessarily distinct.

Example 5 Let $A=(a, b, c, d, e)$ and

$$
R=\{(a, a),(a, b),(b, c),(c, e),(c, d),(d, e)\}
$$

Compute (a) R^{2}; (b) R^{∞}.

Solution

Figure 4.14
(a) The digraph of R is shown in Figure 4.14.
$a R^{2} a$ since $a R a$ and $a R a$.
$a R^{2} b$ since $a R a$ and $a R b$.
$a R^{2} c$ since $a R b$ and $b R c$.
$b R^{2} e$ since $b R c$ and $c R e$.
$b R^{2} d$ since $b R c$ and $c R d$.
$c R^{2} e$ since $c R d$ and $d R e$.

Hence

$$
R^{2}=\{(a, a),(a, b),(a, c),(b, e),(b, d),(c, e)\} .
$$

(b) To compute R^{∞}, we need all ordered pairs of vertices for whic a path of any length from the first vertex to the second. From Fit
we see that

$$
\begin{aligned}
R^{\infty}= & {[(a, a),(a, b),(a, c),(a, d),(a, e),(b, c)} \\
& (b, d),(b, e),(c, d),(c, e),(d, e)]
\end{aligned}
$$

For example, $(a, d) \in R^{\infty}$, since there is a path of length 3 from a to a, b, c, d. Similarly, $(a, e) \in R^{\infty}$, since there is a path of length 3 from to $e: a, b, c, e$ as well as a path of length 4 from a to $e: a, b, c, d, e$.
If $|R|$ is large, it can be tedious and perhaps difficult to compute R^{∞}, of eut R^{2}, from the set representation of R. However, \mathbf{M}_{R} can be used to accompli these tasks more efficiently.

Let R be a relation on a finite set $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, and let M_{R} $n \times n$ matrix representing R. We will show how the matrix $\mathbf{M}_{R^{2}}$, of R^{2},

Example 6 Let A and R be as in Example 5. Then

$$
\mathbf{M}_{R}=\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

From the preceding discussion, we see that

$$
\begin{aligned}
\mathbf{M}_{R^{2}}=\mathbf{M}_{R} \odot \mathbf{M}_{R} & =\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \odot\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{llllll}
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

Computing $\mathbf{M}_{R^{2}}$ directly from R^{2}, we obtain the same result.

$$
\begin{aligned}
\mathbf{M}_{R^{2}}=\mathbf{M}_{R} \odot \mathbf{M}_{R} & =\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \odot\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

Computing $\mathbf{M}_{R^{2}}$ directly from R^{2}, we obtain the same result.
We can see from Examples 5 and 6 that it is often easier to compute R^{2} by computing $\mathbf{M}_{R} \odot \mathbf{M}_{R}$ instead of searching the digraph of R for all vertices that can be joined by a path of length 2. Similarly, we can show that $M_{R^{3}}=M_{R} \odot\left(M_{R} \odot\right.$ $\left.\mathbf{M}_{R}\right)=\left(\mathbf{M}_{R}\right)_{0}^{3}$. In fact, we now show by induction that these two results can be generalized.

First Exam

Topics	المساقّ	آلوقّ	الموإفّق
Chapter 1: Fundamentals - Section 1.1: Examples $\{1,5,6,8,9,10,11\}$ - Section 1.2: Examples $\{1,2,3,4,6,7\}$ - Section 1.3: Examples \{1,2,3,4,5,6,7,12\} - Section 1.4: Examples $\{7\}$ - Section 1.5: Examples \{12,13\} Chapter 2: Logic - Section 2.1: Examples \{1,2,3,4,5,\} - Section 2.2: Examples $\{1,2,3,4\}$ - Section 2.4: Examples $\{1,2\}$ Chapter 3: Counting - Section 3.1: Examples $\{8,9,10\}$ - Section 3.2: Examples $\{3\}$ Chapter 4: Relations \& Digraphs - Section 4.1: Examples $\{1,2,6\}$ - Section 4.2: Examples $\{1,2,3,4,10,11,18,19,22,23,24\}$ - Section 4.3: Examples $\{5,6\}$	$\begin{aligned} & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 4 \\ & 7 \\ & 7 \\ & 78 \end{aligned}$		
طلاب شعبة)			

