Permutations and Combinations

Permutations vs. Combinations

- Both are ways to count the possibilities
- The difference between them is whether order matters or not
- Consider a poker hand:
- A*, 5ヶ, 7\&, 10^, K\&
- Is that the same hand as:

- Does the order the cards are handed out matter?
- If yes, then we are dealing with permutations
- If no, then we are dealing with combinations

3.1

Permutations

Permutations

- Number of poker hands (5 cards):
$-P(52,5)=52 * 51 * 50 * 49 * 48=311,875,200$
- Number of (initial) blackjack hands (2 cards):
$-P(52,2)=52 * 51=2,652$
- r-permutation notation: $P(n, r)$
- The poker hand is one of $\mathrm{P}(52,5)$ permutations

$$
\begin{aligned}
P(n, r) & =n(n-1)(n-2) \ldots(n-r+1) \\
& =\frac{n!}{(n-r)!} \\
& =\prod_{i=n-r+1}^{n} i
\end{aligned}
$$

Permutations with indistinguishable objects

How many distinct permutations are there of the letters in the word APALACHICOLA?

$$
\frac{12!}{4!2!2!}
$$

How many if the two Ls must appear together?

$$
\frac{11!}{4!2!}
$$

How many if the first letter must be an A ?

$$
\frac{11!}{3!2!2!}
$$

Permutations

- A permutation is an ordered arrangement of the elements of some set S
- Let $S=\{a, b, c\}$
$-c, b, a$ is a permutation of S
$-b, c, a$ is a different permutation of S
- An r-permutation is an ordered arrangement of r elements of the set

- The notation for the number of r-permutations: $P(n, r)$
- The poker hand is one of $P(52,5)$ permutations

3.1 Examples

- Example: How many "words" of three distinct letters can be formed from the letters of the word MAST

$$
4 \mathrm{P}_{3}=4!/(4-3)!=4!/ 1!=24
$$

3.1 Examples

- How many distinguishable permutations of the letters in the word BANANA are there ?
(A) 720
(B) 120
(C) 60
(D) 360
- Explanation: In BANANA we have six letters in total but here we have some duplicate letters too so we have to deal with it and have to remove those duplicate case.
B-1
A-3
N-2
So total no of words possible is factorial(6) ie 6! but we must remove duplicate words:
ie- (6!/(2!*3!))
which gives 60
So 60 distinguishable permutation of the letters in BANANA.
So, option (A) is correct.

Theory

- The number of distinguishable permutations that can be formed from a collection of n objects where the first object appears k1 times, and the second object appears k2 times, and so on, is:

$$
\frac{n!}{k_{1}!k_{2}!k_{3}!\cdots k_{r}!}
$$

3.1 Examples

- How many distinguishable permutations of the letters in the word MISSISSIPPI are there?

$11!/(1!4!4!2!)=34.650$

Here are the frequencies of the letters. $\mathrm{M}=1, \mathrm{l}=4, \mathrm{~S}=4, \mathrm{P}=2$ for a total of 11 letters. Be sure you put parentheses around the denominator so that you end up dividing by each of the factorials. $11!/(1!* 4!* 4$! $2!)=11$! / (1 * 24 * 24 * 2$)=34,650$.

3.2

Combinations

Combinations

- What if order doesn't matter?
- In poker, the following two hands are equivalent:

- The number of r-combinations of a set with n elements, where n is non-negative and $0 \leq r \leq n$ is:

$$
C(n, r)=\frac{n!}{r!(n-r)!}
$$

Combinations example

- How many different poker hands are there (5 cards)?
$C(52,5)=\frac{52!}{5!(52-5)!}=\frac{52!}{5!47!}=\frac{52 * 51 * 50 * 49 * 48 * 47!}{5 * 4 * 3 * 2 * 1 * 47!}=2,598,960$
- How many different (initial) blackjack hands are there?

$$
C(52,2)=\frac{52!}{2!(52-2)!}=\frac{52!}{2!50!}=\frac{52 * 51}{2 * 1}=1,326
$$

Combinations

-The number of ways of choosing r elements from S (order does not matter).

$$
\begin{aligned}
& \mathrm{S}=\{1,2,3\} \\
& \text { e.g., } 12,13, \quad 23 \\
& C(n, r)=\binom{n}{r}=\frac{n!}{r!(n-r)!}
\end{aligned}
$$

-The number of r-combinations $C(n, r)$ of a set with $n=|S|$ elements is $=P(n, r) / r$! Note: we have $C(n, r)=C(n, n-r)$

Combination Example

- How many distinct 7-card hands can be drawn from a standard 52-card deck?
- The order of cards in a hand doesn't matter.
- Answer $C(52,7)=P(52,7) / P(7,7)$

$$
\begin{aligned}
& =52 \cdot 51 \cdot 50 \cdot 49 \cdot 48 \cdot 47 \cdot 46 / 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \\
& =52.17 .10 .7 .2 .47 .23 \\
& =133,784,560
\end{aligned}
$$

- Combination Example:

Pick a team of 3 people from a group of 10 . How many outcomes are possible?

- It is a combination since the order that the 3 people are selected does not matter.

$$
{ }_{10} \mathrm{C}_{3} \quad \frac{n!}{(n-r)!r!}
$$

$\frac{10!}{(10-3)!3!}$ we know the $(10-3)!$ Cancels 7 and

$$
\begin{aligned}
& \text { below so } \frac{10 \cdot 9 \cdot 8}{3 \cdot 2 \cdot 1} \\
& \frac{720}{6}=120 \text { outcomes }
\end{aligned}
$$

3.2 Examples

- Compute the number of distinct five-card hands that can be dealt from a deck of 52 cards.

$$
C(n, r)=\frac{n!}{r!(n-r)!}
$$

${ }_{52} C_{5}=52!/ 5!47!$
${ }_{52} C_{5}=2,598,960$

Horse races

- How many ways are there for 4 horses to finish if ties are allowed?
- Note that order does matter!
- Solution by cases
- Noties
- The number of permutations is $\mathrm{P}(4,4)=4!=24$
- Two horses tie
- There are $C(4,2)=6$ ways to choose the two horses that tie
- There are $P(3,3)=6$ ways for the "groups" to finish
- A "group" is either a single horse or the two tying horses
- By the product rule, there are $6^{*} 6=36$ possibilities for this case
- Two groups of two horses tie
- There are $C(4,2)=6$ ways to choose the two winning horses
- The other two horses tie for second place
- Three horses tie with each other
- There are $C(4,3)=4$ ways to choose the two horses that tie
- There are $P(2,2)=2$ ways for the "groups" to finish
- By the product rule, there are $4 * 2=8$ possibilities for this case
- All four horses tie
- There is only one combination for this
- By the sum rule, the total is $24+36+6+8+1=75$

