
2.2
Conditional Statements



Special Characteristics of Conditional Statements
for a Truth Table

When the antecedent is true and the consequent is true, p → 

q is true.

Teacher:

“If you participate in class, then you will get extra points."

If you participate in class (true) and you get extra points (true) 

then, The teacher's statement is true.

If you participate in class (true) and you do not get extra points 

(false), then,

The teacher’s statement is false.

When the antecedent is true and the consequent is false, p 

→ q is false.



Special Characteristics of Conditional Statements
for a Truth Table

If the antecedent is false, then p → q is automatically 

true.

“If you participate in class, then you will get extra points."

If you do not participate in class (false), the truth of the 

teacher's statement cannot be judged.

The teacher did not state what would happen if you did NOT 

participate in class. Therefore, the statement has to be “true”.

If you do not participate in class (false), then you get extra points.

The teacher's statement is true in both cases.

If you do not participate in class (false), then you do not get extra 

points.



The Conditional

• If p, then q

• Symbols: p → q

• p is the antecedent, q is the consequent



Truth Table for The Conditional

p     q p → q

T       T T

T       F F

F       T T

F       F T

If p, then q

A tautology is a statement that is always true, no matter 

what the truth values of the components are.



Examples:

Decide whether each statement is True or False 

T → (4 < 2)

(T represents a true statement, F a false statement).

T → F

F

(8 = 1) → F

F → F

T

F → (3 ≠ 9)

F → T

T



Converse, Inverse, and Contrapositive

Conditional 

Statement

Converse

Inverse

Contrapositiv

e

q → p

p → q

̴ p → ̴ q

̴ q → ̴ p

If q, then p

If not p, then 

not q

If not q, then 

not p

If p, then q



Truth Table for Conditional

p q p → q

T T T

T F F

F T T

F F T



Useful results for the Conditional

• Equivalent to a disjunction:

p → q ≡ ~p  q

• Negation:

~(p → q) ≡ p  ~q



Related Conditional Statements

Direct 

statement
p → q If p, then q

Converse q → p If q, then p

Inverse ~p → ~q If not p, then not q

Contrapositive ~q → ~p If not q, then not p



Equivalences

Direct statement and contrapositive are equivalent:

p → q ≡ ~q → ~p

Converse and Inverse are equivalent:

q → p ≡ ~p → ~q



Common wording for p→ q

If p, then q p is sufficient for q

If p, q q is necessary for p

p implies q All p’s are q’s

p only if q q if p



Examples









2.4
Mathematical Induction



Mathematical induction is a form of mathematical

proof.

Just because a rule, pattern, or formula seems to 

work for several values of n, you cannot simply 

decide that it is valid for all values of n without

going through a legitimate proof.

The  Principle of Mathematical Induction

Let Pn be a statement involving the positive

integer n.   If

1. P1 is true, and 

2. the truth of Pk implies the truth of Pk+1 , for

every positive integer k,

then Pn must be true for all integers n.



What is induction?
• A method of proof

• It does not generate answers: it only can prove them

• Three parts:

• Base case(s): show it is true for one element

• Inductive hypothesis: assume it is true for any given element

• Must be clearly labeled!!!

• Show that if it true for the next highest element



• Show that the sum of the first n odd integers is n2

• Example: If n = 5, 1+3+5+7+9 = 25 = 52

• Formally, Show

• Base case: Show that P(1) is true

Induction example
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• Inductive hypothesis: assume true for k
• Thus, we assume that P(k) is true, or that

• Note: we don’t yet know if this is true or not!

• Inductive step: show true for k+1
• We want to show that: 
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Induction example, continued
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Induction example, continued

• Recall the inductive hypothesis:

• Proof of inductive step:
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What did we show
• Base case: P(1)

• If P(k) was true, then P(k+1) is true
• i.e., P(k) → P(k+1)

• We know it’s true for P(1)

• Because of P(k) → P(k+1), if it’s true for P(1), then it’s true for P(2)

• Because of P(k) → P(k+1), if it’s true for P(2), then it’s true for P(3)

• Because of P(k) → P(k+1), if it’s true for P(3), then it’s true for P(4)

• Because of P(k) → P(k+1), if it’s true for P(4), then it’s true for P(5)

• And onwards to infinity

• Thus, it is true for all possible values of n

• In other words, we showed that:
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Ex.  Use mathematical induction to prove the following 

formula.

Sn = 1 + 3 + 5 + 7 + . . . + (2n-1) = n2

First, we must show that the formula works for n = 1.

1. For n = 1

S1 = 1 = 12

The second part of mathematical induction has two 

steps.  The first step is to assume that the formula is

valid for some integer k.  The second step is to use this

assumption to prove that the  formula is valid for the 

next integer,  k + 1.

2. Assume Sk = 1 + 3 + 5 + 7 + . . . + (2k-1) = k2

is true, show that Sk+1 = (k + 1)2 is true.



Sk+1 = 1 + 3 + 5 + 7 + . . . + (2k – 1) + [2(k + 1) – 1] 

= [1 + 3 + 5 + 7 + . . . +(2k – 1)] + (2k + 2 – 1)

= Sk + (2k + 1)

= k2 + 2k + 1

= (k + 1)2



Ex.  Use mathematical induction to prove the following          formula.

Sn = 12 + 22 + 32 + 42 + . . . + n2 =

1.  Show n = 1 is true.

Sn = 12 = 

2. Assume that  Sk is true.

Sk = 12 + 22 + 32 + 42 + . . . + k2 =

Show that Sk+1 = is true.



Sk+1 = (12 + 22 + 32 + 42 + . . . + k2) + (k + 1)2

+ (k + 1)2

Factor out a (k + 1)



Sums of Powers of Integers

Ex.  

=  385



Examples










