
Geometric Sequences

Geometric Sequence– a sequence whose 

consecutive terms have a common ratio.



A sequence is geometric if the ratios of 

consecutive terms are the same.  
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The number r is the common ratio.



2, 4, 8, 16, …, formula?, …

Ex. 1

12, 36, 108, 324, …, formula?, …

1, 4, 9, 16, …, formula? , …

Are these geometric?

1 1 1 1
, , , ,..., ?,...

3 9 27 61
formula 

Yes   2n

Yes   

4(3)n

No   n2

No     

(-1)n /3



Finding the nth term of a Geometric 

Sequence
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Ex. 2b
Write the first five terms of the 
geometric sequence whose first 
term is a1 = 9 and r = (1/3).

9 3 1
1

3

1

9
, , , ,



INTRODUCTION TO INTEGERS

• Integers are positive and negative numbers.

…, -6, -5, -4, -3, -2, -1, 0, +1, +2, +3, +4, +5, +6, …

• Each negative number is paired with a positive 

number the same distance from 0 on a number line.
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Integers

• Integers are the whole numbers and their 

opposites (no decimal values!)

• Example: -3 is an integer

• Example: 4 is an integer

• Example: 7.3 is not an integer



“Operators” & “Terms”…

12 • -5 + -3 • -6

Terms Operators



Divisibility:

An integer a divides b (written “a|b”)  

if and only if there exists an

Integer c such that c*a = b.

Primes:

A natural number p ≥ 2 such that

among all the numbers 1,2…p

only 1 and p divide p.



(a mod n) means the remainder 

when  a is divided by n. 

a mod n = r



a = dn + r for some integer d



Definition: Modular equivalence
a  b [mod n] 

 (a mod n) = (b mod n)

 n | (a-b)

Written as a n b, and spoken

“a and b are equivalent or 

congruent modulo n”

31  81 [mod 2]

31 2 81

31  80 [mod 7]

31 7 80



Greatest Common Divisor:

GCD(x,y) = 

greatest k ≥ 1 s.t. k|x and k|y.

Least Common Multiple:

LCM(x,y) = 

smallest k ≥ 1 s.t. x|k and y|k.



You can use

MAX(a,b) + MIN(a,b) = a+b

applied appropriately to the factorizations of x 

and y to prove the above fact…

Fact:

GCD(x,y) × LCM(x,y) = x × y



4)  Find the GCF of 42 and 60.

What prime factors do the numbers 

have in common?

Multiply those numbers.

The GCF is 2 • 3 = 6

6 is the largest number that can go 

into 42 and 60!

42 = 2    • 3   •   7

60 = 2 • 2 • 3 • 5



5)  Find the GCF of 40a2b and 48ab4.

40a2b = 2 • 2 • 2 • 5 •     a • a • b

48ab4 = 2 • 2 • 2 • 2 • 3 • a • b • b • b • b

What do they have in common?

Multiply the factors together.

GCF = 8ab



What is the GCF of 48 and 64?

1. 2

2. 4

3. 8

4. 16





Matrices

Introduction



Matrices - Introduction

Matrix algebra has at least two advantages:

•Reduces complicated systems of equations to simple 

expressions

•Adaptable to systematic method of mathematical treatment 

and well suited to computers

Definition:

A matrix is a set or group of numbers arranged in a square or 

rectangular array enclosed by two brackets
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Matrices - Introduction

Properties:

•A specified number of rows and a specified number of 

columns

•Two numbers (rows x columns) describe the dimensions 

or size of the matrix.

Examples: 

3x3 matrix

2x4 matrix

1x2 matrix 
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Matrices - Introduction

A matrix is denoted by a bold capital letter and the elements 

within the matrix are denoted by lower case letters 

e.g. matrix [A] with elements aij
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i goes from 1 to m

j goes from 1 to n

Amxn=

mAn



Matrices - Introduction

TYPES OF MATRICES

1. Column matrix or vector:

The number of rows may be any integer but the number of 

columns is always 1
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Matrices - Introduction

TYPES OF MATRICES

2. Row matrix or vector

Any number of columns but only one row

 611  2530

 naaaa 1131211 



Matrices - Introduction

TYPES OF MATRICES

3. Rectangular matrix

Contains more than one element and number of rows is not 

equal to the number of columns
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Matrices - Introduction

TYPES OF MATRICES

4. Square matrix

The number of rows is equal to the number of columns

(a square matrix   A has an order of m)
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m x m

The principal or main diagonal of a square matrix is composed of all 

elements aij for which i=j



Matrices - Introduction

TYPES OF MATRICES

5. Diagonal matrix

A square matrix where all the elements are zero except those on 

the main diagonal
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i.e. aij =0 for all i = j

aij = 0 for some or all i = j



Matrices - Introduction

TYPES OF MATRICES

6. Unit or Identity matrix - I

A diagonal matrix with ones on the main diagonal
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ij

ij

a

a

0

0



Matrices - Introduction

TYPES OF MATRICES

7. Null (zero) matrix - 0

All elements in the matrix are zero
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Matrices - Introduction

TYPES OF MATRICES

8. Triangular matrix

A square matrix whose elements above or below the main 

diagonal are all zero
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Matrices - Introduction

TYPES OF MATRICES

8a. Upper triangular matrix

A square matrix whose elements below the main 

diagonal are all zero

i.e. aij = 0 for all i > j
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Matrices - Introduction

TYPES OF MATRICES

A square matrix whose elements above the main diagonal are all 

zero

8b. Lower triangular matrix

i.e. aij = 0 for all i < j
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Matrices – Introduction
TYPES OF MATRICES

9. Scalar matrix

A diagonal matrix whose main diagonal elements are 

equal to the same scalar

A scalar is defined as a single number or constant
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i.e. aij = 0 for all i = j
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Matrices

Matrix Operations 



Matrices - Operations

EQUALITY OF MATRICES

Two matrices are said to be equal only when all 

corresponding elements are equal

Therefore their size or dimensions are equal as well
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Matrices - Operations

ADDITION AND SUBTRACTION OF MATRICES

The sum or difference of two matrices, A and B of the same 

size yields a matrix C of the same size

ijijij bac 

Matrices of different sizes cannot be added or subtracted



Matrices - Operations

SCALAR MULTIPLICATION OF MATRICES

Matrices can be multiplied by a scalar (constant or single 

element)

Let k be a scalar quantity; then

kA = Ak

Ex.  If k=4 and 
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Matrices - Operations

MULTIPLICATION OF MATRICES

The product of two matrices is another matrix

Two matrices A and B must be conformable for multiplication to 

be possible

i.e. the number of columns of A must equal the number of rows 

of B

Example.

A x     B =      C

(1x3)     (3x1)      (1x1)



Matrices - Operations
B x    A =     Not possible!

(2x1)   (4x2)

A x    B =    Not possible!

(6x2)    (6x3)

Example

A x       B =    C

(2x3)        (3x2)         (2x2)



Matrices - Operations
TRANSPOSE OF A MATRIX

If :
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Then transpose of A, denoted AT is:

T

jiij aa  For all i and j



Matrices - Operations
INVERSE OF A MATRIX

Consider a scalar k.  The inverse is the reciprocal or division of 1 

by the scalar.

Example:

k=7 the inverse of k or k-1 = 1/k = 1/7

Division of matrices is not defined since there may be AB = AC

while B = C

Instead matrix inversion is used.  

The inverse of a square matrix, A, if it exists, is the unique matrix 

A-1 where:

AA-1 = A-1 A = I



Zero-One (Boolean) Matrix
Definition:

• Entries are Boolean values (0 and 1)

• Operations are also Boolean
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Matrix join.

• A  B = [ai,j  bi,j]

Matrix meet.

• A  B = [ai,j  bi,j]

Example:



Zero-One (Boolean) Matrix
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Matrix multiplication: Amk and Bkn

• the product is a Zero-One matrix, denoted AB = Cmn

• cij = (ai1  b1j)  (ai2  b2i)  …  (aik  bkj).

Example:








