Geometric Sequences

Geometric Sequence- a sequence whose consecutive terms have a common ratio.

Geometric Sequence

A sequence is geometric if the ratios of consecutive terms are the same.

$$
\frac{a_{2}}{a_{1}}=\frac{a_{3}}{a_{2}}=\frac{a_{4}}{a_{3}}=\ldots .=r
$$

The number \underline{r} is the common ratio.

Ex. 1

Are these geometric?
2, 4, 8, 16, ..., formula?, ...
Yes 2^{n}
$12,36,108,324, \ldots$, formula?, ...
$-\frac{1}{3}, \frac{1}{9},-\frac{1}{27}, \frac{1}{61}, \ldots$, formula $?, \ldots(-1)^{\mathrm{No}} / 3$
$1,4,9,16, \ldots$, formula? , ...
No n^{2}

Finding the nth term of a Geometric Sequence

$$
a_{n}=a_{1} r^{n-1}
$$

$$
r=\frac{a_{2}}{a_{1}}
$$

Ex. 2b

Write the first five terms of the geometric sequence whose first term is $a_{1}=9$ and $r=(1 / 3)$.

$$
9,3,1, \frac{1}{3}, \frac{1}{9}
$$

INTRODUCTION TO INTEGERS

- Integers are positive and negative numbers.
$\ldots,-6,-5,-4,-3,-2,-1,0,+1,+2,+3,+4,+5,+6, \ldots$
- Each negative number is paired with a positive number the same distance from 0 on a number line.

Integers

- Integers are the whole numbers and their opposites (no decimal values!)
- Example: -3 is an integer
- Example: 4 is an integer
- Example: 7.3 is not an integer

"Operators" \& "Terms"...

$12 \cdot-5+-3 \cdot-6$

 Terms
 Operators

Divisibility:
An integer a divides b (written "a|b")
if and only if there exists an
Integer c such that $\mathrm{c}^{*} \mathrm{a}=\mathrm{b}$.
Primes:
A natural number $\mathrm{p} \geq 2$ such that among all the numbers $1,2 \ldots$ p only 1 and p divide p .
$(a \bmod n)$ means the remainder when a is divided by n .
$a \bmod n=r$
\Leftrightarrow
$a=d n+r$ for some integer d

Definition: Modular equivalence

$\mathrm{a} \equiv \mathrm{b}[\bmod \mathrm{n}]$
$\Leftrightarrow(\mathrm{a} \bmod \mathrm{n})=(\mathrm{b} \bmod \mathrm{n})$
$\Leftrightarrow \mathrm{n} \mid(\mathrm{a}-\mathrm{b})$

$$
\begin{aligned}
& 31 \equiv 81[\bmod 2] \\
& 31 \equiv_{2} 81 \\
& 31 \equiv 80[\bmod 7] \\
& 31 \equiv_{7} 80
\end{aligned}
$$

Written as $\mathrm{a} \equiv_{\mathrm{n}} \mathrm{b}$, and spoken " a and b are equivalent or congruent modulo n"

Greatest Common Divisor:

$\operatorname{GCD}(\mathrm{x}, \mathrm{y})=$
greatest $\mathrm{k} \geq 1$ s.t. $\mathrm{k} \mid \mathrm{x}$ and $\mathrm{k} \mid \mathrm{y}$.

Least Common Multiple:
$\operatorname{LCM}(\mathrm{x}, \mathrm{y})=$
smallest $\mathrm{k} \geq 1$ s.t. $\mathrm{x} \mid \mathrm{k}$ and $\mathrm{y} \mid \mathrm{k}$.

Fact:
 $\operatorname{GCD}(\mathrm{x}, \mathrm{y}) \times \operatorname{LCM}(\mathrm{x}, \mathrm{y})=\mathrm{x} \times \mathrm{y}$

You can use
$\operatorname{MAX}(a, b)+\operatorname{MIN}(a, b)=a+b$
applied appropriately to the factorizations of x and y to prove the above fact...
4) Find the GCF of 42 and 60 . $42=\binom{2}{2} \cdot 2 \cdot\binom{3}{3} \cdot 5$
What prime factors do the numbers have in common?
Multiply those numbers.

$$
\text { The GCF is } 2 \cdot 3=6
$$

6 is the largest number that can go into 42 and 60 !
5) Find the GCF of $40 a^{2} b$ and $48 a b^{4}$.
$\left.40 a^{2} \mathrm{~b}=2 \cdot 2 \cdot\left(\begin{array}{l}2 \cdot 5 \cdot(\mathrm{a} \cdot \mathrm{a} \cdot \mathrm{b} \\ 48 \mathrm{ab}^{4}=2 \\ 2\end{array}\right) \cdot(2) \cdot 2 \cdot 3 \cdot(\mathrm{a}) \cdot \mathrm{b} \cdot \mathrm{b}\right) \cdot \mathrm{b} \cdot \mathrm{b}$
What do they have in common?
Multiply the factors together.

$$
\mathrm{GCF}=\mathbf{8 a b}
$$

What is the GCF of 48 and 64?

1. 2
2. 4
3. 8
4. 16

Example 7 Let $a=540$ and $b=504$. Factoring a and b into primes, we obbain

$$
\begin{aligned}
& a=540 \doteq 2^{2} \cdot 3^{3} \cdot 5 \text { and } b=504=2^{3} \cdot 3^{2} \cdot 7 \\
& \text { Thus all the prime numbers that are factors of either } a \text { or } b \text { are } \\
& p_{3}=5 \text {, and } p_{4}=7 \text {. Then } a=2^{2} \cdot 3^{3} \cdot 5^{1} \cdot 7^{0} \text { and } b=2^{3} .
\end{aligned}
$$ $p_{3}=5$, and $p_{4}=7$. Then $a=2^{2} \cdot 3^{3} \cdot 5^{1} \cdot 7^{0}$ and $b=2^{3} \cdot 3^{2} \cdot 5^{0}=7_{1}$

have

$$
\begin{aligned}
\operatorname{GCD}(540,504) & =2^{\min (2.3)} \cdot 3^{\min (3.2)} \cdot 5^{\min (1.0)} \cdot 7^{\min (0.1)} \\
& =2^{2} \cdot 3^{2} \cdot 5^{0} \cdot 7^{0} \\
& =2^{2} \cdot 3^{2} \text { or } 36 .
\end{aligned}
$$

Also,

$$
\begin{aligned}
\operatorname{LCM}(540,504) & =2^{\max (2,3)} \cdot 3^{\max (3,2)} \cdot 5^{\max (1,0)} \cdot 7^{\max (0.1)} \\
& =2^{3} \cdot 3^{3} \cdot 5^{1} \cdot 7^{1} \text { or } 7560
\end{aligned}
$$

Then
$\operatorname{GCD}(540,504) \cdot \operatorname{LCM}(540,504)=36 \cdot 7560=272,160=540 \cdot 504$ As a verification, we can also compute $\operatorname{GCD}(540,504)$ by the Euclidean algo and obtain the same result.

If n and m are integ.
$0 \leq r<n$. Sometimes thers and $n>1$, Theorem 1 tells us we can write $m=q$. ander r is more important than the quotienta.

Matrices

Introduction

Matrices - Introduction

Matrix algebra has at least two advantages:
-Reduces complicated systems of equations to simple expressions

- Adaptable to systematic method of mathematical treatment and well suited to computers

Definition:

A matrix is a set or group of numbers arranged in a square or rectangular array enclosed by two brackets

$$
\left[\begin{array}{cc}
1 & -1
\end{array}\right] \quad\left[\begin{array}{cc}
4 & 2 \\
-3 & 0
\end{array}\right] \quad\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Matrices - Introduction

Properties:

- A specified number of rows and a specified number of columns
-Two numbers (rows x columns) describe the dimensions or size of the matrix.

Examples:
3x3 matrix
2 x 4 matrix

$$
[1
$$

1 x 2 matrix

$$
\left[\begin{array}{ccc}
1 & 2 & 4 \\
4 & -1 & 5 \\
3 & 3 & 3
\end{array}\right]\left[\begin{array}{cccl}
1 & 1 & 3 & -3 \\
0 & 0 & 3 & 2
\end{array}\right]
$$

Matrices - Introduction

A matrix is denoted by a bold capital letter and the elements within the matrix are denoted by lower case letters
e.g. matrix $[\mathbf{A}]$ with elements a_{ij}
$\underset{\mathrm{m}_{\mathrm{m}} \mathbf{A}^{\mathrm{n}}}{\mathbf{A}_{\mathrm{mxn}}=}\left[\begin{array}{cccc}a_{11} & a_{12} \ldots & a_{i j} & a_{i n} \\ a_{21} & a_{22} \ldots & a_{i j} & a_{2 n} \\ \mathrm{M} & \mathrm{M} & \mathrm{M} & \mathrm{M} \\ a_{m 1} & a_{m 2} & a_{i j} & a_{m n}\end{array}\right]$
i goes from 1 to m
j goes from 1 to n

Matrices - Introduction

TYPES OF MATRICES

1. Column matrix or vector:

The number of rows may be any integer but the number of columns is always 1

$$
\left[\begin{array}{l}
1 \\
4 \\
2
\end{array}\right] \quad\left[\begin{array}{c}
1 \\
-3
\end{array}\right] \quad\left[\begin{array}{l}
a_{11} \\
a_{21} \\
\mathrm{M} \\
a_{m 1}
\end{array}\right]
$$

Matrices - Introduction

TYPES OF MATRICES

2. Row matrix or vector

Any number of columns but only one row

$$
\left.\begin{array}{l}
{\left[\begin{array}{lll}
1 & 1 & 6
\end{array}\right] \quad\left[\begin{array}{llll}
0 & 3 & 5 & 2
\end{array}\right]} \\
{\left[\begin{array}{ll}
a_{11} & a_{12}
\end{array} a_{13} \Lambda\right.} \\
a_{1 n}
\end{array}\right] .
$$

Matrices - Introduction

TYPES OF MATRICES

3. Rectangular matrix

Contains more than one element and number of rows is not equal to the number of columns

$$
\left[\begin{array}{cc}
1 & 1 \\
3 & 7 \\
7 & -7
\end{array}\right] \quad\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
2 & 0 & 3 & 3 & 0
\end{array}\right]
$$

$m \neq n$

Matrices - Introduction

TYPES OF MATRICES

4. Square matrix

The number of rows is equal to the number of columns
(a square matrix $\underset{\mathrm{mxm}}{\mathbf{A}}$ has an order of m)

$$
\left[\begin{array}{ll}
1 & 1 \\
3 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 1 \\
9 & 9 & 0 \\
6 & 6 & 1
\end{array}\right]
$$

The principal or main diagonal of a square matrix is composed of all elements $\mathrm{a}_{i j}$ for which $i=j$

Matrices - Introduction

TYPES OF MATRICES

5. Diagonal matrix

A square matrix where all the elements are zero except those on the main diagonal

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{llll}
3 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 5 & 0 \\
0 & 0 & 0 & 9
\end{array}\right]
$$

i.e. $\mathrm{a}_{i j}=0$ for all $i \neq j$
$\mathrm{a}_{i j} \neq 0$ for some or all $i=j$

Matrices - Introduction

TYPES OF MATRICES

6. Unit or Identity matrix - I

A diagonal matrix with ones on the main diagonal

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad\left[\begin{array}{cc}
a_{i j} & 0 \\
0 & a_{i j}
\end{array}\right]
$$

i.e. $\mathrm{a}_{i j}=0$ for all $i \neq j$
$\mathrm{a}_{i j}=1$ for some or all $i=j$

Matrices - Introduction

TYPES OF MATRICES

7. Null (zero) matrix - 0

All elements in the matrix are zero

$$
\begin{aligned}
& {\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \quad\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]} \\
& a_{i j}=0 \quad \text { For all } i, j
\end{aligned}
$$

Matrices - Introduction

TYPES OF MATRICES

8. Triangular matrix

A square matrix whose elements above or below the main diagonal are all zero

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
5 & 2 & 3
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
5 & 2 & 3
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 8 & 9 \\
0 & 1 & 6 \\
0 & 0 & 3
\end{array}\right]
$$

Matrices - Introduction

TYPES OF MATRICES

8a. Upper triangular matrix
A square matrix whose elements below the main diagonal are all zero

$$
\left[\begin{array}{ccc}
a_{i j} & a_{i j} & a_{i j} \\
0 & a_{i j} & a_{i j} \\
0 & 0 & a_{i j}
\end{array}\right]\left[\begin{array}{ccc}
1 & 8 & 7 \\
0 & 1 & 8 \\
0 & 0 & 3
\end{array}\right] \quad\left[\begin{array}{llll}
1 & 7 & 4 & 4 \\
0 & 1 & 7 & 4 \\
0 & 0 & 7 & 8 \\
0 & 0 & 0 & 3
\end{array}\right]
$$

i.e. $\mathrm{a}_{i j}=0$ for all $i>j$

Matrices - Introduction

TYPES OF MATRICES

8b. Lower triangular matrix
A square matrix whose elements above the main diagonal are all zero

$$
\left[\begin{array}{ccc}
a_{i j} & 0 & 0 \\
a_{i j} & a_{i j} & 0 \\
a_{i j} & a_{i j} & a_{i j}
\end{array}\right] \quad\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
5 & 2 & 3
\end{array}\right]
$$

i.e. $\mathrm{a}_{i j}=0$ for all $i<j$

Matrices - Introduction

TYPES OF MATRICES

9. Scalar matrix

A diagonal matrix whose main diagonal elements are equal to the same scalar

A scalar is defined as a single number or constant
$\left[\begin{array}{ccc}a_{i j} & 0 & 0 \\ 0 & a_{i j} & 0 \\ 0 & 0 & a_{i j}\end{array}\right]$
i.e. $\mathrm{a}_{i j}=0$ for all $i \neq j$
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$\mathrm{a}_{i j}=\mathrm{a}$ for all $i=j$

Matrices

Matrix Operations

Matrices - Operations

EQUALITY OF MATRICES

Two matrices are said to be equal only when all corresponding elements are equal

Therefore their size or dimensions are equal as well
$\mathbf{A}=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 5 & 2 & 3\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 5 & 2 & 3\end{array}\right] \quad \mathbf{A}=\mathbf{B}$

Matrices - Operations

ADDITION AND SUBTRACTION OF MATRICES

The sum or difference of two matrices, \mathbf{A} and \mathbf{B} of the same size yields a matrix \mathbf{C} of the same size

$$
c_{i j}=a_{i j}+b_{i j}
$$

Matrices of different sizes cannot be added or subtracted

Matrices - Operations

SCALAR MULTIPLICATION OF MATRICES

Matrices can be multiplied by a scalar (constant or single element)

Let k be a scalar quantity; then

$$
\begin{gathered}
\mathrm{kA}=\mathbf{A k} \\
A=\left[\begin{array}{cc}
3 & -1 \\
2 & 1 \\
2 & -3 \\
4 & 1
\end{array}\right]
\end{gathered}
$$

Ex. If $\mathrm{k}=4$ and

Matrices - Operations

MULTIPLICATION OF MATRICES

The product of two matrices is another matrix
Two matrices \mathbf{A} and \mathbf{B} must be conformable for multiplication to be possible
i.e. the number of columns of \mathbf{A} must equal the number of rows of B

Example.

$$
\begin{gathered}
\mathbf{A} \quad \mathbf{B}=\mathbf{C} \\
(1 \mathrm{x} 3)
\end{gathered}(3 \times 1) \quad(1 \mathrm{x} 1) \mathrm{C} .
$$

Matrices - Operations

B $\mathbf{x} \mathbf{A}=$ Not possible!
(2x1) (4x2)
$\mathbf{A} \mathbf{x} \quad \mathbf{B}$ Not possible!
(6x2) (6x3)

Example
A $\mathrm{X} \quad \mathbf{B}=\mathbf{C}$
(2x3) (3x2) (2x2)

Matrices - Operations

TRANSPOSE OF A MATRIX

If :

$$
\underset{2 \times 3}{A}={ }_{2} A^{3}=\left[\begin{array}{lll}
2 & 4 & 7 \\
5 & 3 & 1
\end{array}\right]
$$

Then transpose of A , denoted A^{T} is:

$$
\begin{gathered}
A^{T}={ }_{2} A^{3^{T}}=\left[\begin{array}{ll}
2 & 5 \\
4 & 3 \\
7 & 1
\end{array}\right] \\
a_{i j}=a_{j i}^{T} \quad \text { For all } i \text { and } j
\end{gathered}
$$

Matrices - Operations

INVERSE OF A MATRIX

Consider a scalar k . The inverse is the reciprocal or division of 1 by the scalar.

Example:
$\mathrm{k}=7 \quad$ the inverse of k or $\mathrm{k}^{-1}=1 / \mathrm{k}=1 / 7$
Division of matrices is not defined since there may be $\mathbf{A B}=\mathbf{A C}$ while $\mathbf{B} \neq \mathbf{C}$

Instead matrix inversion is used.
The inverse of a square matrix, \mathbf{A}, if it exists, is the unique matrix \mathbf{A}^{-1} where:

$$
\mathbf{A} \mathbf{A}^{-1}=\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}
$$

Zero-One (Boolean) Matrix

Definition:

- Entries are Boolean values (0 and 1)
- Operations are also Boolean

Matrix join.
Matrix meet.

- $A \vee B=\left[a_{i, j} \vee b_{i, j}\right]$
- $A \wedge B=\left[a_{i, j} \wedge b_{i, j}\right]$

Example:

$$
A=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \quad B=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& A \vee B=\left[\begin{array}{lll}
1 \vee 0 & 0 \vee 1 & 1 \vee 0 \\
0 \vee 1 & 1 \vee 1 & 0 \vee 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0
\end{array}\right] \\
& A \wedge B=\left[\begin{array}{lll}
1 \wedge 0 & 0 \wedge 1 & 1 \wedge 0 \\
0 \wedge 1 & 1 \wedge 1 & 0 \wedge 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
\end{aligned}
$$

Zero-One (Boolean) Matrix

Matrix multiplication: $\mathrm{A}_{m \times k}$ and $\mathrm{B}_{k \times n}$

- the product is a Zero-One matrix, denoted $A \circ B=C_{m \times n}$
- $c_{i j}=\left(a_{i 1} \wedge b_{1 j}\right) \vee\left(a_{i 2} \wedge b_{2 i}\right) \vee \ldots \vee\left(a_{i k} \wedge b_{k j}\right)$.

Example:
$A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 1 & 0\end{array}\right] \quad B=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right] \quad A \circ B=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 0\end{array}\right]$

Example
Example 12

$$
\begin{aligned}
& \text { Let } \mathbf{A}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \text { and } \mathbf{B}=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right] . \\
& \text { (a) Compute } \mathbf{A} \vee \mathbf{B} \text {. }
\end{aligned}
$$

Solution

(a) Let $\mathbf{A} \vee \mathbf{B}=\left[c_{i j}\right]$. Then, since a_{43} and b_{43} are both 0 , we see the $c_{43}=0$. In all other cases, either $a_{i j}$ or $b_{i j}$ is 1 , so $c_{i j}$ is also 1 . Thus

$$
\mathbf{A} \vee B=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

(b) Let $\mathbf{A} \wedge \mathbf{B}=\left[d_{i j}\right]$. Then, since a_{11} and b_{11} are both $1, d_{11}=1$, and since a_{23} and b_{23} are both $1, d_{23}=1$. In all other cases, either $a_{i j}$ or $b_{i j}$ is $0, s 0$ $d_{i j}=0$. Thus

$$
A \wedge B=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Example 13 Let $\mathbf{A}=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ and $\mathbf{B}=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1\end{array}\right]$. Compute $\mathbf{A} \odot \mathbf{B}$.

Solution

Let $\mathbf{A} \odot \mathbf{B}=\left[e_{i j}\right]$. Then $e_{11}=1$, since row 1 of \mathbf{A} and column 1 of \mathbf{B} each have a 1 as the first entry. Similarly, $e_{12}=1$, since $a_{12}=1$ and $b_{22}=1$; that is, the first row of \mathbf{A} and the second column of \mathbf{B} have a 1 in the second position. In a similar way we see that $e_{13}=1$. On the other hand, $e_{14}=0$, since row 1 of \mathbf{A} and column

+ of \boldsymbol{B} do nor have common 1's in any position. Proceeding in this way, we cboten

$$
\mathbf{A} \odot \mathbf{B}=\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1
\end{array}\right]
$$

