Chapter 8
 Topics in Graph Theory

Chapter 8: Topics in Graph Theory

- Section 8.1: Examples $\{1,2,3\}$
- Section 8.2: Examples $\{1,2,4\}$
- Section 8.3: Examples $\{1\}$

8.1 - Graphs

- Graph
- A graph G consists of a finite set of vertices V , a finite set of edges E , and a function γ that assigns a subset of vertices $\{v, w\}$ to each edge (v may equal w)
- If e is an edge, and $\gamma(\mathrm{e})=\{\mathrm{v}, \mathrm{w}\}$ we say e is the edge between v \& w , and that v \& w are the endpoints of e

8.1 - Graphs

- Terminology
- Degree of a vertex
- Number of edges having that vertex as an endpoint
- Loop
- Edge from a vertex to itself
- Contributes 2 to the degree of a vertex
- Isolated vertex
- Vertex with degree 0
- Adjacent vertices
- Vertices that share an edge

8.1 - Graphs

Path

- A path Π in a graph G consists of a pair of sequences $\left(\mathrm{V}_{\Pi}, \mathrm{E}_{\Pi}\right), \mathrm{V}_{\Pi}: \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{k}}$ and $\mathrm{E}_{\Pi}: \mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{k}-1}$ s.t.:

1. $\gamma\left(\mathrm{e}_{\mathrm{i}}\right)=\left\{\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}\right\} \forall \mathrm{i}$
2. $\mathrm{e}_{\mathrm{i}} \neq \mathrm{e}_{\mathrm{j}} \forall \mathrm{i}, \mathrm{j}$

8.1 - Graphs

- More terminology
- Circuit
- Path that begins and ends at the same vertex
- Simple path
- No vertex appears more than once (except possibly the first and last)
- Simple circuit
- Simple path where first and last vertices are equal

8.1 - Graphs

- Special types of graphs
- Connected graph
- \exists path from every vertex to every other (different) vertex
- Disconnected graph
- There are at least 2 vertices which do not have a path between them
- components
- Regular Graph
- All vertices have the same degree

8.2

Euler Paths and Circuits

8.2 - Euler Paths and Circuits

- A path in a graph G is an Euler path if it includes every edge exactly once
- An Euler circuit is an Euler path that is also a circuit

8.2 - Euler Paths and Circuits

- Theorem 8.2.1

1. If G has a vertex of odd degree, there can be no Euler circuit of G
2. If G is a connected graph and every vertex has even degree then there is an Euler circuit in G

- Theorem 8.2.2

1. If a graph G has more than 2 vertices of odd degree, there can be no Euler path in G
2. If G is connected and has exactly 2 vertices of odd degree, then there exists an Euler path in G. Any Euler path must begin at one vertex of odd degree, and end at the other.

8.2 - Euler Paths and Circuits

- Bridge
- A bridge is an edge in a connected graph that if removed would result in a disconnected graph

Euler circuits and paths

- An Euler circuit in a graph is a simple circuit containing every edge of the graph.
- An Euler path in a graph is a simple path containing every edge of the graph.
- Theorem 1: A finite graph has an Euler circuit if and only if it is connected and all vertices have even degree.

Definitions

- A network is a figure made up of points (vertices) connected by nonintersecting edges
(Also, known as vertex-edge graphs)
- A vertex is the intersection of two edges.
- A vertex is odd if it is connected to an odd number of edges
- A vertex is even if it is connected to an even number of edges

More Definitions

- An edge joins any two vertices It can be curved or straight

Euler Paths

A graph has an Euler path if it can be traced in 1 sweep without lifting the pencil from paper AND without tracing the same edge more than once.

- Vertices may be passed through more than once.
- The starting and ending points are not the same.

Euler Circuits

A circuit is similar to a Euler path, except the starting and ending points must be the same.

Complete the exploration on the relationship between the nature of the vertices and the kind of graph in your notes.

- Conclusions: Based on the observations of your table:
- A graph with all vertices being even contains an Euler circuit
- A graph with 2 odd vertices and some even vertices contains an Eulerpath .
- A graph with more than 2 odd vertices does not contain an Euler path or circuit

To name a path or circuit you list the vertices in order

Example 1: Name a Euler circuit
One possible solution is
D,E,F,A,D,C,A,B,D
b) Can you find another one?

Example 2:

Given A,B,E,F,B,C,D,F,E,D is this a Euler path or circuit or neither?

How can you tell? Explain your answer

Neither, touches EF twice

Find a Euler circuit if possible, if not list a Euler path

2 odd vertices so has to be a path, starting at E or C

1 Possible solution:
EBADEFDCBFC

Hamilton Paths and Circuits

A Hamilton Path is a continuous path that passes through every _ vertex once and only once.

A Hamilton Circuit is a Hamilton path that begins and ends at the same vertex. (the starting/end vertex will be the only vertex touched twice

How is a Hamilton Path different from a Euler path or Circuit?

