Set and Set Operations

Introduction

- A set is a collection of objects.
- The objects in a set are called elements of the set.
- A well - defined set is a set in which we know for sure if an element belongs to that set.
- Example:
- The set of all movies in which John Cazale appears is well - defined. (Name the movies, and what do they have in common? There are only 5.)
- The set of all movie serials made by Republic Pictures is well - defined.
- The set of best TV shows of all time is not well defined. (It is a matter of opinion.)

Ways to define sets

- Explicitly: \{John, Paul, George, Ringo\}
- Implicitly: $\{1,2,3, \ldots\}$, or $\{2,3,5,7,11,13,17, \ldots\}$
- Set builder: $\{x: x$ is prime $\},\{x \mid x$ is odd $\}$.
- In general $\{x: P(x)\}$, where $P(x)$ is some predicate.

We read
"the set of all x such that $P(x)$ "

Set - Builder Notation

- When it is not convenient to list all the elements of a set, we use a notation the employs the rules in which an element is a member of the set. This is called set - builder notation.
- $\mathrm{V}=\{$ people | citizens registered to vote in Maricopa County\}
- $A=\{x \mid x>5\}=$ This is the set A that has all real numbers greater than 5 .
- The symbol | is read as such that.

Set properties 1

- Order does not matter
- We often write them in order because it is easier for humans to understand it that way
$-\{1,2,3,4,5\}$ is equivalent to $\{3,5,2,4,1\}$
- Sets are notated with curly brackets

Set properties 2

- Sets do not have duplicate elements
- Consider the set of vowels in the alphabet.
- It makes no sense to list them as $\{a, a, a, e, i, o, o$, o, o, o, u\}
- What we really want is just $\{\mathrm{a}, \mathrm{e}, \mathrm{i}, \mathrm{o}, \mathrm{u}\}$
- Consider the list of students in this class
- Again, it does not make sense to list somebody twice
- Note that a list is like a set, but order does matter and duplicate elements are allowed
- We won't be studying lists much in this class

Specifying a set 1

- Sets are usually represented by a capital letter (A, B, S, etc.)
- Elements are usually represented by an italic lower-case letter (a, x, y, etc.)
- Easiest way to specify a set is to list all the elements: $\mathrm{A}=\{1,2,3,4,5\}$
- Not always feasible for large or infinite sets

Specifying a set 2

- Can use an ellipsis (...): $B=\{0,1,2,3, \ldots\}$
- Can cause confusion. Consider the set $\mathrm{C}=\{3,5,7$, ...\}. What comes next?
- If the set is all odd integers greater than 2, it is 9
- If the set is all prime numbers greater than 2 , it is 11
- Can use set-builder notation
- $\mathrm{D}=\{x \mid x$ is prime and $x>2\}$
$-\mathrm{E}=\{x \mid x$ is odd and $x>2\}$
- The vertical bar means "such that"
- Thus, set D is read (in English) as: "all elements x such that x is prime and x is greater than 2 "

Specifying a set 3

- A set is said to "contain" the various "members" or "elements" that make up the set
- If an element a is a member of (or an element of) a set S, we use then notation $a \in S$
- $4 \in\{1,2,3,4\}$
- If an element is not a member of (or an element of) a set S , we use the notation $a \notin \mathrm{~S}$
- $7 \notin\{1,2,3,4\}$
- Virginia $\notin\{1,2,3,4\}$

Special Sets of Numbers

- $\mathbf{N}=$ The set of natural numbers.

$$
=\{1,2,3, \ldots\} .
$$

- $\mathbf{W}=$ The set of whole numbers.

$$
=\{0,1,2,3, \ldots\}
$$

- $\mathbf{Z}=$ The set of integers.

$$
=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

- $\mathbf{Q}=$ The set of rational numbers.
$=\{x \mid x=p / q$, where p and q are elements of \mathbf{Z} and

$$
q \neq 0\}
$$

- $\mathbf{H}=$ The set of irrational numbers.
- $\mathbf{R}=$ The set of real numbers.
- $\mathbf{C}=$ The set of complex numbers.

Universal Set and Subsets

- The Universal Set denoted by U is the set of all possible elements used in a problem.
- When every element of one set is also an element of another set, we say the first set is a subset.
- Example $A=\{1,2,3,4,5\}$ and $B=\{2,3\}$ We say that B is a subset of A. The notation we use is $B \subseteq A$.
- Let $S=\{1,2,3\}$, list all the subsets of S.
- The subsets of S are $\varnothing,\{1\},\{2\},\{3\},\{1,2\}$, $\{1,3\},\{2,3\},\{1,2,3\}$.

The Empty Set

- The empty set is a special set. It contains no elements. It is usually denoted as \{ \} or \varnothing.
- The empty set is always considered a subset of any set.
- Do not be confused by this question:
- Is this set $\{0\}$ empty?
- It is not empty! It contains the element zero.

Intersection of sets

- When an element of a set belongs to two or more sets we say the sets will intersect.
- The intersection of a set A and a set B is denoted by $A \cap B$.
- $A \cap B=\{x \mid x$ is in A and x is in $B\}$
- Note the usage of and. This is similar to conjunction. $A^{\wedge} B$.
- Example $A=\{1,3,5,7,9\}$ and $B=\{1,2,3,4,5\}$
- Then $A \cap B=\{1,3,5\}$. Note that $1,3,5$ are in both A and B .

Mutually Exclusive Sets

- We say two sets A and B are mutually exclusive if $A \cap B=\varnothing$.
- Think of this as two events that can not happen at the same time.

Union of sets

- The union of two sets A, B is denoted by $A \cup B$.
- $A \cup B=\{x \mid x$ is in A or x is in $B\}$
- Note the usage of or. This is similar to disjunction A v B.
- Using the set A and the set B from the previous slide, then the union of A, B is $A \cup B=\{1,2,3$, $4,5,7,9\}$.
- The elements of the union are in A or in B or in both. If elements are in both sets, we do not repeat them.

Complement of a Set

- The complement of set A is denoted by A^{\prime} or by A^{C}.
- $A^{\prime}=\{x \mid x$ is not in set $A\}$.
- The complement set operation is analogous to the negation operation in logic.
- Example Say $U=\{1,2,3,4,5\}, A=\{1,2\}$, then $A^{\prime}=\{3,4,5\}$.

Cardinal Number

- The Cardinal Number of a set is the number of elements in the set and is denoted by $n(A)$.
- Let $A=\{2,4,6,8,10\}$, then $n(A)=5$.
- The Cardinal Number formula for the union of two sets is

$$
n(A \cup B)=n(A)+n(B)-n(A \cap B)
$$

- The Cardinal number formula for the complement of a set is $n(A)+n\left(A^{\prime}\right)=n(U)$.

Examples.

$\{1,2,3\}$ is the set containing " 1 " and " 2 " and "3."
$\{1,1,2,3,3\}=\{1,2,3\}$ since repetition is irrelevant.
$\{1,2,3\}=\{3,2,1\}$ since sets are unordered.
$\{0,1,2,3, \ldots\}$ is a way we denote an infinite set (in this case, the natural numbers).
$\varnothing=\{ \}$ is the empty set, or the set containing no element

Definitions and notation

$x \in S$ means " x is an element of set S." $x \notin S$ means " x is not an element of set S."
$A \subseteq B$ means " A is a subset of B."
or, " B contains A."
or, "every element of A is also in B." or, $\forall x((x \in A) \rightarrow(x \in B))$.

Definitions and notation

$A \subseteq B$ means " A is a subset of B."
$A \supseteq B$ means " A is a superset of B."
$A=B$ if and only if A and B have exactly the same elements

$$
\begin{aligned}
& \text { iff, } A \subseteq B \text { and } B \subseteq A \\
& \text { iff, } A \subseteq B \text { and } A \supseteq B \\
& \text { iff, } \forall x((x \in A) \leftrightarrow(x \in B)) .
\end{aligned}
$$

So to show equality of sets A and B, show:

$$
\begin{aligned}
& A \subseteq B \\
& B \subseteq A
\end{aligned}
$$

Definitions and notation

$A \subset B$ means " A is a proper subset of B." $-A \subseteq B$, and $A \neq B$.
$-\forall x((x \in A) \rightarrow(x \in B))$

$$
\wedge \exists x((x \in B) \wedge(x \notin A))
$$

Definitions and notation

Quick examples:

- $\{1,2,3\} \subseteq\{1,2,3,4,5\}$
- $\{1,2,3\} \subset\{1,2,3,4,5\}$

Is $\varnothing \subseteq\{1,2,3\}$?
Yes! $\forall x(x \in \varnothing) \rightarrow(x \in\{1,2,3\})$ holds, because $(x \in \varnothing)$ is false.
Is $\varnothing \in\{1,2,3\}$? No!
Is $\varnothing \subseteq\{\varnothing, 1,2,3\}$? Yes!
Is $\varnothing \in\{\varnothing, 1,2,3\}$? Yes!

Cardinality

If S is finite, then the cardinality of $S,|S|$, is the number of distinct elements in S.
If $S=\{1,2,3\}$

$$
\text { If } S=\{3,3,3,3,3\}
$$

$$
\text { If } S=\varnothing
$$

$$
|S|=0
$$

If $S=\{\varnothing,\{\varnothing\},\{\varnothing,\{\varnothing\}\}\}$

If $S=\{0,1,2,3, \ldots\},|S|$ is infinite. (more on this later)

Power sets

If S is a set, then the power set of S is

$$
P(S)=2^{S}=\{x: x \subseteq S\} .
$$

$$
\text { If } S=\{a\} \quad 2^{s}=\{\varnothing,\{a\}\}
$$

$$
\text { If } S=\{a, b\}
$$

$$
2^{s}=\{\varnothing,\{a\},\{b\},
$$

$$
\text { If } \left.S=\varnothing \quad 2^{s}=\{\varnothing\} . \quad\{\mathrm{a}, \mathrm{~b}\}\right\} .
$$

$$
\text { If } S=\{\varnothing,\{\varnothing\}\} \quad<2^{s}=\{\varnothing,\{\varnothing\},\{\{\varnothing\}\},\{\varnothing,\{\varnothing\}\}\}
$$

Fact: if S is finite, $\left|2^{S}\right|=2^{|S|}$. (if $\left.|S|=n,\left|2^{S}\right|=2^{n}\right)$

Cartesian Product

The Cartesian Product of two sets A and B is:

$$
A \times B=\{(a, b): a \in A \wedge b \in B\}
$$

If $A=\{$ Charlie, Lucy, Linus $\}$, and
$B=\{$ Brown, VanPelt $\}$, then
$A \times B=\{($ Charlie, Brown), (Lucy, Brown), (Linus, Brown), (Charlie, VanPelt), (Lucy, VanPelt), (Linus, VanPelt)\}

$$
\begin{aligned}
& A_{1} \times A_{2} \times \ldots \times A_{n}= \\
& \quad=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right): a_{1} \in A_{1}, a_{2} \in A_{2}, \ldots, a_{n} \in A_{n}\right\}
\end{aligned}
$$

$$
A, B \text { finite } \rightarrow|A \times B|=|A||B|
$$

Set Operations

union

The union of two sets A and B is:

$$
A \cup B=\{x: x \in A \vee x \in B\}
$$

If $A=\{$ Charlie, Lucy, Linus $\}$, and $B=\{$ Lucy, Desi\}, then
$A \cup B=\{$ Charlie, Lucy, Linus, Desi $\}$

intersection

The intersection of two sets A and B is:

$$
A \cap B=\{x: x \in A \wedge x \in B\}
$$

If $A=\{$ Charlie, Lucy, Linus $\}$, and $B=\{$ Lucy, Desi $\}$, then
$A \cap B=\{$ Lucy $\}$

The intersection of two sets A and B is:

$$
A \cap B=\{x: x \in A \wedge x \in B\}
$$

If $A=\{x: x$ is a US president $\}$, and $B=\{x: x$ is in this room $\}$, then $A \cap B=\{x: x$ is a US president in this room $\}=\varnothing$

> Sets whose
> intersection is empty are called disjoint sets

complement

The complement of a set A is:

$$
\bar{A}=\{x: x \notin A\}
$$

If $A=\{x: x$ is not shaded $\}$, then

$$
\bar{A}=\{x: x \text { is shaded }\}
$$

symmetric difference

The symmetric difference, $A \oplus B$, is:
$A \oplus B=\{x:(x \in A \wedge x \notin B) \vee(x \in B \wedge x \notin A)\}$

$$
\begin{aligned}
& =(A-B) \cup(B-A) \\
& =\{x: x \in \boldsymbol{A} \oplus x \in B\}
\end{aligned}
$$

Set Identities

- Identity

$$
\begin{aligned}
& A \cap U=A \\
& A \cup \varnothing=A
\end{aligned}
$$

- Domination

$$
\begin{aligned}
& A \cup U=U \\
& A \cap \varnothing=\varnothing
\end{aligned}
$$

- Idempotent

$$
\begin{aligned}
& A \cup A=A \\
& A \cap A=A
\end{aligned}
$$

2.2 Set Identities

- Excluded Middle $A \cup \bar{A}=U$

Uniqueness

$$
A \cap \bar{A}=\varnothing
$$

-Double complement
$\overline{\bar{A}}=A$

Set Identities

- Commutativity

$$
\begin{aligned}
& A \cup B=B \cup A \\
& A \cap B=B \cap A
\end{aligned}
$$

- Associativity $(A \cup B) \cup C=A \cup(B \cup$ C)

$$
(A \cap B) \cap C=A \cap(B \cap C)
$$

- Distributivity

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup
$$

C)

$$
A \cap(B \cup C)=(A \cap B) \cup(A \cap
$$

C)

Subsets 1

- If all the elements of a set S are also elements of a set T, then S is a subset of T
- For example, if $S=\{2,4,6\}$ and $T=\{1,2,3,4,5,6$, 7\}, then S is a subset of T
- This is specified by $S \subseteq T$
- Or by $\{2,4,6\} \subseteq\{1,2,3,4,5,6,7\}$
- If S is not a subset of T, it is written as such: $S \nsubseteq T$
- For example, $\{1,2,8\} \nsubseteq\{1,2,3,4,5,6,7\}$

Subsets 2

- Note that any set is a subset of itself!
- Given set $S=\{2,4,6\}$, since all the elements of S are elements of S, S is a subset of itself
- This is kind of like saying 5 is less than or equal to 5
- Thus, for any set $S, S \subseteq S$

Subsets 3

- The empty set is a subset of all sets (including itself!)
- Recall that all sets are subsets of themselves
- All sets are subsets of the universal set
- A horrible way to define a subset:
$-\forall x(x \in \mathrm{~A} \rightarrow x \in \mathrm{~B})$
- English translation: for all possible values of x, (meaning for all possible elements of a set), if x is an element of A, then x is an element of B
- This type of notation will be gone over later

Proper Subsets 1

- If S is a subset of T, and S is not equal to T, then S is a proper subset of T
- Let $T=\{0,1,2,3,4,5\}$
- If $S=\{1,2,3\}$, S is not equal to T, and S is a subset of T
- A proper subset is written as $S \subset T$
- Let $R=\{0,1,2,3,4,5\}$. R is equal to T, and thus is a subset (but not a proper subset) or T
- Can be written as: $R \subseteq T$ and $R \not \subset T$ (or just $R=T$)
- Let $Q=\{4,5,6\}$. Q is neither a subset or T nor a proper subset of T

Proper Subsets 2

- The difference between "subset" and "proper subset" is like the difference between "less than or equal to" and "less than" for numbers
- The empty set is a proper subset of all sets other than the empty set (as it is equal to the empty set)

Proper subsets: Venn diagram

$$
S \subset R
$$

