
home

Al-Albayt University

Computer Science Department

C++ Programming 1 (901133)

Instructor: Eng. Rami Jaradat

rjaradat@aabu.edu.jo

1

mailto:rjaradat@aabu.edu.jo

home

Subjects

1. Introduction to C++ Programming

2. Control Structures

3. Functions

4. Arrays

5. Pointers

6. Strings

2

home

1 - Introduction to C++

Programming

3

home

What is computer?

• Computers are programmable devices capable of performing

computations and making logical decisions.

• Computers can store, retrieve, and process data according to

a list of instructions

• Hardware is the physical part of the compute: keyboard,

screen, mouse, disks, memory, and processing units

• Software is a collection of computer programs, procedures

and documentation that perform some tasks on a computer

system

4

home

Computer Logical Units

• Input unit

– obtains information (data) from input devices

• Output unit

– outputs information to output device or to control other devices.

• Memory unit

– Rapid access, low capacity, stores information

• Secondary storage unit

– cheap, long-term, high-capacity storage, stores inactive programs

• Arithmetic and logic unit (ALU)

– performs arithmetic calculations and logic decisions

• Central processing unit (CPU):

– supervises and coordinates the other sections of the computer

5

home

Computer language

• Machine languages: machine dependent, it consists of strings of numbers

giving machine specific instructions:

 +1300042774

 +1400593419

 +1200274027

• Assembly languages: English-like abbreviations representing elementary

operations, assemblers convert assembly language to machine language:

 load basepay

 add overpay

 store grosspay

• High-level languages: Similar to everyday English, use mathematical

notations, compilers convert high-level language into machine language,

C++ is a high level language:

 grossPay = basePay + overTimePay

6

home

Program Design

• Programming is a creative process

• Program Design Process

– Problem Solving Phase

• Result is an algorithm that solves the problem

– Implementation Phase

• Result is the algorithm translated into a programming

language

7

home

Problem Solving Phase

• Be certain the task is completely specified

– What is the input?

– What information is in the output?

– How is the output organized?

• Develop the algorithm before implementation

– Experience shows this saves time in getting program to run.

– Test the algorithm for correctness

8

home

Problem Solving Phase

• Algorithm

– A sequence of precise instructions (written is pseudo code or

represented as a flowchart) which leads to a solution

• Pseudo code

– Artificial, informal language similar to everyday English

– Used to develop algorithms and not executed on computers

– Only executable statements, no need to declare variables

• Program

– An algorithm expressed in a language the computer can understand

9

home

Implementation Phase

• Translate the algorithm into a programming language

– Easier as you gain experience with the language

• Compile the source code

– Locates errors in using the programming language

• Run the program on sample data

– Verify correctness of results

• Results may require modification of the algorithm and

program

10

home

Flowchart

• Graphical representation of an algorithm or a portion of algorithm

• Drawn using certain special-purpose symbols connected by arrows

called flow lines:

Start and End

Input / output

Selection

Calculation

11

home

Input a,b

S = a + b

Output s

Compute and print the summation of two numbers

12

home

Input n1,n2,n3

S = n1+n2+n3

Average = s / 3

Output average

Compute and print the average of three numbers

13

home

Input R

A = 3.14 * R *R

Output A

Compute the area of the circle

Where area = 3.14 x R2

14

home

Input Num

Output

"Positive"

Num>0

True

False

Read a number then print positive if it is positive

15

home

Input Num

Output

"Positive"

Num>0

True False

Output

"Negative"

Read a number then print positive if it is positive and

print negative otherwise.

16

home

Input x, y

Output

x

X>y

True False

Output

y

Read Two numbers then print the greatest one

17

home

Read three numbers and print the smallest one

Input a, b, c

a<b

 and

 a<c

True

output a

b<a

 and

 b<c

True

output b

c<a

 and

 c<b

True

output c

18

home

Input a, b, c

a<b
True

Output a

False

a<c b<c

Output c Output b Output c

Another Solution

19

home

Output "Amman"

Count<=5

True

False

Count = 1

Count = Count + 1

Print the word "Amman" five times.

20

home

Output I

I<=11

True

False

I = 1

I = I + 2

Print the following numbers

1 3 5 7 9 11

21

home

Output I

I >= 2

True

False

I = 20

I = I - 3

Print the following numbers

20 17 14 11 8 5 2

22

home

C<=5
True

False

C= 1

C = C + 1

S = 0

S = S + C

Output S

Compute and print 𝑆

Where 𝑆 = 1 + 2 + 3 + 4 + 5

23

home

C<=10

True

False

C = 1

C = C + 1

S = 0

S = S + Num
Output S

INPUT Num

Print the Sum of 10 numbers entered by the user

24

home

C>=1

True

False

C = 5

C = C - 1

Fact = 1

Fact = Fact * C

Output Fact

Compute and Print the factorial of 5, where:

𝑓𝑎𝑐𝑡 5 = 5 × 4 × 3 × 2 × 1

25

home

I<=n

True

False

I = 2

I = I + 2

M = 1

M = M * I

Output M

INPUT n

Compute and Print the value of M where:

𝑀 = 2×4×6×⋯ × 𝑛

26

home

• Edit

• Preprocess

• Compile

• Link

• Load

• Execute

Phases of C++ Programs Execution

CPU

Disk

Disk

Disk

Disk

Disk

Loader

Linker

Compiler

Preprocessor

Editor Program is created in the editor and

stored on disk

Preprocessor program processes the code

Compiler creates object code and stores it on

disk.

Linker links the object code with the libraries,

creates an executable file and stores it on disk

Loader puts program in memory.

CPU takes each instruction and executes it,

possibly storing new data values as the

program executes.

Primary Memory

27

home

C++ Programming Language

• C++ standard library

– Rich collections of existing classes and functions which are

written in the core language

– Can be used at any C++ program

• C++ programs

– Built from pieces called classes and functions which can

span multiple files

– Structured into small understandable units to reduce the

complexity and decrease program size

– "Building block approach" to creating programs help in

software reuse

• C++ is case sensitive

28

home

// A first program in C++.

#include<iostream>

//function main begins program execution

int main()

{

 std::cout << "Welcome to C++!\n";

}

First C++ Program: Printing a Line of Text

Welcome to C++!

29

home

First C++ Program: Printing a Line of Text

// A first program in C++.

• Comments are ignored by compiler, used to document

programs and improve readability

– Single line comment begin with //, and multiple line

comments begin with /* and end with */

#include <iostream>

• Preprocessor directives begin with #

– Processed by preprocessor before compiling

– Causes a copy of the specified header file (iostream) to be

included in place of the directive

– iosteam is standard library header file that must be included if

because cout is to be used

30

home

int main()

• Part of every C++ Program

• main() is a function, which begins with left brace ({) and ends
with right brace (})

std::cout << "Welcome to C++!\n";

• cout is a standard output stream object found in iostream

• cout is connected to the screen

• << is the stream insertion operator
– Value to right (right operand) inserted into output stream (which is

connected to the screen)

• std:: specifies using name that belongs to "namespace" std

• Escape characters (\): indicates "special" character output

First C++ Program: Printing a Line of Text

31

home

Escape Character

Escape

Sequence
Description

\n
Newline. Position the screen cursor to the beginning of the next

line.

\t Horizontal tab. Move the screen cursor to the next tab stop.

\r
Carriage return. Position the screen cursor to the beginning of the

current line; do not advance to the next line.

\a Alert. Sound the system bell.

\\ Backslash. Used to print a backslash character.

\" Double quote. Used to print a double quote character.

32

home

Example

#include <iostream>

int main()

{

 std::cout << "Welcome ";

 std::cout << "to C++!\n";

}

Welcome to C++!

33

home

Example

#include <iostream>

using namespace std;

int main()

{

 cout << "Welcome\To\n\nC++!\n";

}

Welcome

To

C++!

34

home

Testing and Debugging

• Bug

– A mistake in a program

• Debugging

– Eliminating mistakes in programs

35

home

Program Errors

• Syntax errors

– Violation of the grammar rules of the language

– Discovered by the compiler

• Error messages may not always show correct location of errors

• Run-time errors

– Error conditions detected by the computer at run-time

• Logic errors

– Errors in the program's algorithm

– Most difficult to diagnose

– Computer does not recognize an error

36

home

Stream extraction operator (>>)

• When used with cin, waits for the user to input a value

and stores the value in the variable to the right of the

operator

• The user types a value, then presses the Enter (Return)

key to send the data to the computer

• Example:

int myVariable;

cin >> myVariable;

– Waits for user input, then stores input in myVariabl

37

home

Compute and print the summation of two numbers

#include <iostream>

using namespace std;

int main(){

 int num1, num2, sum;

 cout <<"Please Enter two numbers:\n";

 cin >> num1 >> num2;

 sum = num1 + num2;

 cout<<"sum = "<<sum<<endl;

}

Please Enter two numbers:

2

3

sum = 5

38

home

Fundamental C++ Objects

• Integer objects

short int long

• Floating-point objects

float double long double

– represent real numbers

• Character objects

char

– may hold only a single letter, a single digit, or a single special
character like a, $, 7, *.

• Different types allow programmers to use resources more
efficiently

39

home

Character object type

• ASCII is the dominant encoding scheme

– ' ' encoded as 32 '+' encoded as 43

– 'A' encoded as 65 'a' encoded as 97

• Explicit (literal) characters within single quotes:
 'a' 'D' '*'

• Special characters - delineated by a backslash \

 '\n' '\t' '\\'

40

home

Memory Concepts

• Variables are names of memory locations

• Correspond to actual locations in computer's memory

• Every variable has name, type, size and value

• When new value placed into variable, overwrites previous value

• Reading variables from memory is nondestructive

 int num1 = 4;

int num2 = 7;

int sum = num1 + num2;

num1 4

num2 7

Sum 11

41

home

Names (Naming Entities)

• Used to denote program values or components

• A valid name is a sequence of

– Letters (upper and lowercase)

– A name cannot start with a digit

• Names are case sensitive

– MyVar is a different name than MYVAR

• There are two kinds of names

– Keywords

– Identifiers

42

home

Keywords

• Keywords are words reserved as part of the language

• They cannot be used by the programmer to name things

• They consist of lowercase letters only

• They have special meaning to the compiler

43

home

C++ Keywords

and continue goto public try

and_eq default if register typedef

asm delete inline reinterpret_cast typeid

auto do int return typename

bitand double long short union

bitor dynamic_cast mutable signed unsigned

bool else namespace sizeof using

break enum new static virtual

case explicit not static_cast void

catch export not_eq struct volatile

char extern operator switch wchar_t

class false or template while

compl float or_eq this xor

const for private throw xor_eq

const_cast friend protected true

44

home

Identifiers

• Used to name entities in C++

• Consists of letters, digits or underscore
– Starts with a letter or underscore

– Can not start with a digit

• Identifiers should be:
– Short enough to be reasonable to type

– Long enough to be understandable

• Examples
– Grade

– Temperature

– CameraAngle

– IntegerValue

45

home

Definitions/declaration

• All variable that are used in a program must be defined (declared)

• A variable definition specifies Type and Identifier

• General definition form: Type Id;

• Examples:
 Char Response;

 int MinElement;

 float Score;

 float Temperature;

 int i;

 char c;

 double x;

• Value of a variable is whatever in its assigned memory location

• Memory location is where a variable value can be stored for

program use

46

home

Type compatibilities

• Store the values in variables of the same type

• This is a type mismatch:

 int x;

 x = 2.99;

• Variable x will contain the value 2, not 2.99

47

home

Arithmetic

• Arithmetic is performed with operators.

• Arithmetic operators are listed in following table

• Modulus operator returns the remainder of integer division

 7 % 5 evaluates to 2

• Integer division truncates remainder

 7 / 5 evaluates to 1

C++ operation Arithmetic operator Algebraic expression C++ expression

Addition + f + 7 f + 7

Subtraction - p – c p – c

Multiplication * bm b * m

Division / x / y x / y

Modulus % r mod s r % s

48

home

 Results of Arithmetic operators

• Arithmetic operators can be used with any numeric type.

• An operand is a number or variable used by the operator

e.g.

– integer1 + integer2

• + is operator

• integer1 and integer2 are operands

• Result of an operator depends on the types of operands

– If both operands are int, the result is int

– If one or both operands are double, the result is double

49

home

Integer Division

12

12

𝟏𝟐 % 𝟑 0

𝟏𝟐

𝟑

4

3 14

12

𝟏𝟒 % 𝟑 2

4

3

𝟏𝟒

𝟑

50

home

Examples on integer division

#include <iostream>

using namespace std;

int main() {

 cout<< 10/4 <<endl;

 cout<< 10.0/4 <<endl;

 cout<< 10/4.0 <<endl;

}

2

2.5

2.5

51

home

Comparing mathematical and C++ expressions

Mathematical formula C++ Expression

𝑥2 − 5𝑦𝑧 𝑥 ∗ 𝑥 − 5 ∗ 𝑦 ∗ 𝑧

𝑥(𝑦 + 2𝑧) 𝑥 ∗ (𝑦 + 2 ∗ 𝑧)

1

𝑥2 + 4𝑦 + 3

1/(𝑥 ∗ 𝑥 + 4 ∗ 𝑦 + 3)

𝑤 + 𝑥

𝑦 + 2𝑧

(𝑤 + 𝑥)/(𝑦 + 2 ∗ 𝑧)

52

home

Operator precedence

• The order in which an operator is executed

• For example, the multiplication operator (*) is executed

before addition operator (+)

• To find the average of three variables a, b and c

– Incorrect: a + b + c / 3

– Correct: (a + b + c) / 3

53

home

Rules of operator precedence

Operator(s) Operation(s) Order of evaluation (precedence)

() Parentheses

Evaluated first. If the parentheses are nested,

the expression in the innermost pair is

evaluated first. If there are several pairs of

parentheses "on the same level" (i.e., not

nested), they are evaluated left to right.

*, /, or %

Multiplication

Division

Modulus

Evaluated second. If there are several, they

are evaluated left to right.

+ or -
Addition

Subtraction

Evaluated last. If there are several, they are

evaluated left to right.

54

home

Example on Operator Precedence

1)10/5 = 2  20 – 2 * 2 + 3 * 5 % 4

2)2*2 = 4  20 - 4 + 3 * 5 % 4

3)3*5 = 15  20 - 4 + 15 % 4

4)15%4 = 3  20 - 4 + 3

5)20 – 4 = 16  16 + 3

6)16 + 3 = 19

Evaluate the following arithmetic expression:

20 – 10 / 5 * 2 + 3 * 5 % 4

55

home

Assignment operator (=)

• The (=) operator in C++ is not an equal sign. It assigns a value to a

variable

• An assignment statement changes the value of the variable on the

left of the assignment operator (=)

• General Form: identifier = expression;

• On the right of the assignment operator can be

• Constant: x = 21;

• Variable: x = y;

• Expression: x = y * 2 + z;

• The following statement is not true in algebra: i = i + 3;

– In C++ it means the new value of i is the previous value of i plus 3

56

home

Assignment expression abbreviations

• C++ provides several assignment operators for abbreviating
assignment expressions, as shown in the table below:

Assignment

opera tor

Sample

expression
Exp lana tion Assigns

Assume: int c = 3, d = 5, e = 4, f = 6, g = 12;

+= c += 7 c = c + 7 10 to c

-= d -= 4 d = d - 4 1 to d

*= e *= 5 e = e * 5 20 to e

/= f /= 3 f = f / 3 2 to f

%= g %= 9 g = g % 9 3 to g

57

home

Print the average of three numbers

int main() {

 int n1 , n2 , n3;

 float s , average;

 cout << "Please Enter three integers:\n";

 cin >> n1 >> n2 >> n3;

 s = n1 + n2 + n3;

 average = s / 3;

 cout << "Average = " << average << endl;

}

Please Enter three integers:

1

6

2

Average = 3
58

home

Compute the area of a circle, where area = π x r2

int main(){

 double Pi = 3.14;

 int r;

 cout<<"Please enter r : ";

 cin>>r;

 double area;

 area = Pi * r * r;

 cout<<"Circle's Area = "<< area <<endl;

}

59

home

Increment and Decrement Operators

• Increment and decrement operators are unary operators as
they require only one operand.

– ++ unary increment operator: Adds 1 to the value of a variable

– -- unary decrement operator

– x++ is equivalent to x = x + 1

– x-- is equivalent to x = x - 1

• Pre-increment

– When the operator is used before the variable (++c), Variable
is changed, then the expression it is in is evaluated

• Post-increment

– When the operator is used after the variable (c++), Expression
the variable is in executes, then the variable is changed.

60

home

Increment and Decrement Operators

• Example: If c = 5, then

– cout << ++c;

• c is changed to 6, then printed out

– cout << c++;

• Prints out 5 (cout is executed before the increment)

• c then becomes 6

• When variable not in expression

– Preincrement and postincrement have same effect

++c;

cout << c;

and

c++;

cout << c;

are the same

 61

home

Increment and decrement operators

Operator
Sample

expression
Explanation

++

Preincrement
++a

Increment a by 1, then use the new value of a in the

expression in which a resides.

++

Postincrement
a++

Use the current value of a in the expression in which

a resides, then increment a by 1.

--

Predecrement
--b

Decrement b by 1, then use the new value of b in the

expression in which b resides.

--

postdecrement
b--

Use the current value of b in the expression in which

b resides, then decrement b by 1.

62

home

Understand the effect of pre and post-increment

int main(){

 int c;

 c = 5;

 cout << c << endl;

 cout << c++ << endl

 cout << c << endl << endl;

 c = 5;

 cout << c << endl;

 cout << ++c << endl;

 cout << c << endl;

}

5

5

6

5

6

6

63

home

Operators Precedence

Operators Associativity Type

() left to right parentheses

++ -- left to right unary (postfix)

++ -- + - right to left unary (prefix)

* / % left to right multiplicative

+ - left to right additive

< <= > >= left to right relational

== != left to right equality

= += -= *= /= %= right to left assignment

64

home

Example
int main(){

 int X = 5 , Y = 7 , Z;

 cout<< X++ <<endl;

 cout<< ++X <<endl;

 Z = X++ + Y;

 cout <<X<<"\t"<<Y<<"\t"<<Z<<endl;

 Z = ++X + Y;

 cout <<X<<"\t"<<Y<<"\t"<<Z<<endl;

 Z = X++ + Y++;

 cout <<X<<"\t"<<Y<<"\t"<<Z<<endl;

}

5

7

8 7 14

9 7 16

10 8 16

65

home

2 - Control Structures

66

home

Control Structures

• Sequence structure: C++ programs executed sequentially by
default.

• Selection structures

• if selection structure

– Perform an action if condition is true.

– Skip the action if condition is false.

• if/else selection structure

– Perform an action if condition is true.

– Performs a different action if the condition is false.

• switch selection structure

– Perform one of many different actions depending on the

value of an integer expression.

67

home

Control structures

• Repetition structures

•while repetition structure
– An action to be repeated while some conditions remains true.

•do/while repetition structure
– Similar to while structure.

– Tests the loop continuation after the loop body is performed.

– while tests the loop continuation condition before the loop
body is performed.

•for repetition structure
– used when the number of times to be repeated is fixed/known

– It handles all the details of the counter controlled repetition

– Execution continues as long as the condition is true

68

home

Condition

• Condition is a logical expression that evaluates to true
or false

• Specifies the decision you are making

• Conditions can be formed by using the equality (==) and

relational operators (< , > , >= , <= , !=)

• Equality operators precedence is lower then precedence

of relational operators.

69

home

• Composed of operands and arithmetic operations (+ , - , *, /,
%)

• evaluates to a numeric value
– (e.g. 3 + 4 gives 7)

• Operands may be numbers and/or identifiers that have
numeric values

Arithmetic Expressions

70

home

Relational Expressions

• Composed from operands and operators.

• Operands may be numbers and/or identifiers that have
numeric values

• Result is a logical value (true or false).

• Operators are relational operators: < , > , <= , >= ,= =, !=

• Example:
– (a < b) gives true if value of a is less than value of b,

or gives false if value of a is not less than value of b

– (x != y) gives true if x does not equal y or gives
false if x equal y

71

home

Equality and relational operators

Standard algebraic

equality operator or

relational operator

C++ equality

or relational

operator

Example

of C++

condition

Meaning of

C++ condition

Relational operators

> > x > y x is greater than y

< < x < y x is less than y

 >= x >= y x is greater than or equal to y

 <= x <= y x is less than or equal to y

Equality operators

= == x == y x is equal to y

 != x != y x is not equal to y

72

home

Boolean variables and relational operations

int main(){

 bool x , y;

 x = 5 > 7;

 cout << "x = " << x << endl;

 y = 5 < 7;

 cout << "y = " << y << endl;

 x = true;

 cout << "x = " << x << endl;

 y = false;

 cout << "y = " << y << endl;

 x = 5;

 cout << "x = " << x;

}

x = 0

y = 1

x = 1

y = 0

x = 1

73

home

Logical Expressions

• Also called Boolean expressions

• Result is a logical value true or false

• Composed from operands and operators.

• Operands are identifiers that have logical values

• Operators are logical operators:
– &&(AND)

– ||(OR)

– !(NOT)

• Example:
– X && Y

– a && b || c

74

home

&&

True True True

True False False

False True False

False False False

||

True True True

True False True

False True True

False False False

!

True False

False True

Evaluating Logical Expressions

• AND truth table

• OR truth table

• NOT truth table

75

home

Arithmetic, Relational and Logical

Expressions

• Relational expression may contain arithmetic sub

expressions:

− (3 + 7) < (12 * 4)

• Logical expression may contain relational and arithmetic

subexpressions:

− x && y && (a > b)

− (2 + t) < (6 * w) && (p == q)

76

home

Operators Precedence

Operators Associativity Type

() left to right parentheses

++ -- left to right unary (postfix)

++ -- + - right to left unary (prefix)

* / % left to right multiplicative

+ - left to right additive

< <= > >= left to right relational

== != left to right equality

&&

||

= += -= *= /= %= right to left assignment

77

home

int main(){

 int a = 10, b = 3;

 cout<<"a+b="<<a+b <<endl;

 cout<<"a+b*2= "<<a+b*2 <<endl;

 cout<<"(a+b)*2= "<<(a+b)*2<<endl;

 cout<<a<<"<"<<b<<" is "<<(a<b)<<endl;

 cout<<"a+b != a+3 is "<<(a+b != a+3);
}

a+b=13

a+b*2= 16

(a+b)*2= 26

10<3 is 0

a+b != a+3 is 0

Operators Precedence

78

home

if selection Structure

if (Condition)

 statement;

if (Condition) {

 statement1;

 statement1;

 statement1;

 …

}

79

home

Read any number from user, then print

positive if it is positive

int main()

{

 int Num;

 cout<<"Enter an integer Number:";

 cin >> Num;

 if (Num > 0)

 cout<<" Positive\n";

}

80

home

Another Version

int main(){

 int Num;

bool w;

 cout<<"Enter an integer number:";

cin >> Num;

 w = Num > 0;

if (w)

 cout<<" Positive\n";

}

81

home

if/else selection Structure

if (Condition)

 statement;

else

 statement;

if (Condition){

 statement1;

 statement2;

 …

 }

else{

 statement1;

 statement2;

 …

}

82

home

Read a mark, then print "PASS" if it is greater than or

equal 50, or print "FAIL" otherwise

int main(){

 int mark;

 cout<<"Please Enter your mark: ";

 cin >> mark;

 if (mark >= 50)

 cout<<" PASS\n";

 else

 cout<<"FAIL\n";

}

83

home

Ternary conditional operator

• Ternary conditional operator (?:)

– Three arguments (condition, value if true, value if false)

cout <<(mark >= 50 ? "PASS\n" : "FAIL\n");

• Equivalent to:

 if (mark >= 50)

 cout<<" PASS\n";

 else

 cout<<"FAIL\n";

Condition Value if true Value if false

84

home

More than one statement in if

int main(){

 int mark;

 cout << "Please Enter your mark: ";

 cin >> mark;

 if (mark >= 50){

 cout<<"PASS\n";

 cout<<"You can take the next course\n";

 }

 else {

 cout<<"FAIL\n";

 cout<<"You must take this course again\n";

 }

}

85

home

int main(){

 int a,b,c,d;

 cout<<"To convert from a/b to c d/b, Enter a,b";

 cin >> a >> b;

 c = a / b;

 d = a % b;

 cout<< a << "/" << b << "=";

 if (c != 0)

 cout<<c;

 if (d!=0)

 cout<<" "<<d<<"/"<<b;

}

Write a program to print the fraction a/b in the

form c d/b

86

home

Read any number, then print "positive" if it is

positive and "negative" otherwise.

int main(){

 int Num;

 cout<<"Please Enter Number:";

 cin>>Num;

 if (Num < 0)

 cout<<"Negative\n";

 else

 cout<<"Positive\n";

}

87

home

Equality (==) and Assignment (=) Operators

int main(){

 int x = 0;

 if (x = 0)

 cout<<"condition is true\n";

 else

 cout<<"condition is false\n";

}

condition is false

88

home

Read two numbers and print the largest

int main(){

 int x,y;

 cout<<"Enter two numbers:";

 cin>>x>>y;

 cout<<"Max = ";

 if (x > y)

 cout<<x<<endl;

 else

 cout<<y<<endl;

}

Enter two numbers:15

4

Max = 15

89

home

Read three numbers and print the smallest

int main(){

 int a, b, c;

 cout<<"Enter three numbers:\n";

 cin>>a>>b>>c;

 cout<<"Min = ";

 if ((a < b) && (a < c))

 cout<<a;

 if ((b < a) && (b < c))

 cout<<b;

 if ((c < a) && (c < b))

 cout<<c;

}

Please Enter three numbers: 8

3

6

Min = 3
90

home

Read three numbers and print the smallest

int main(){

 int a, b, c;

 cout<<"Please Enter three numbers:";

 cin>> a >> b >> c;

 cout<< "Min = ";

 int min = a;

 if (b < min) min = b;

 if (c < min) min = c;

 cout<<min;

}

Please Enter three numbers: 8

3

6

Min = 3
91

home

Please Enter three numbers: 5

11

9

Min = 5

Read three numbers and print the smallest, use

nested if

int main(){

 int a, b, c;

 cout<<"Please Enter three numbers: ";

 cin>>a>>b>>c;

 cout<<"Min = ";

 if (a < b)

 if (a < c) cout<<a;

 else cout<<c;

 else

 if (b < c) cout<<b;

 else cout<<c;

}

92

home

Read a number, if it is positive add 10 to it and print

Number "is positive", otherwise, subtract 10 and print

Number "is negative"

int main(){

 int Number;

 cout<<"Please enter Number:";

 cin>>Number;

 if (Number>0) {

 Number = Number + 10;

 cout<<Number<<" is Positive\n";

 }

 else {

 Number = Number - 10;

 cout<<Number<<" is Negative\n";

 }

}

93

home

Dangling else

int main(){

 int x = 2 , y = 5 , z = 10;

 if (x > y)

 if (x < z)

 cout <<" Hello";

 else

 cout <<"Hi";

}

Nothing is printed
94

home

Multiple Selection Structure (switch)

• Test variable for multiple values

• Series of case labels and optional default case

switch (variable) {

 case value1: // taken if variable = value1

 statements

 break; // necessary to exit switch

 case value2:

 case value3: //taken if variable = value2 or = value3

 statements

 break;

 default: //taken if variable matches no other case

 statements

 break;

}

95

home

Example 1
int main(){

 int a;

 cout<<" Enter an Integer between 0 and 10: ";

 cin>>a;

 switch(a){

 case 0: case 1: cout<<"hello ";

 case 2: cout<<"there ";

 case 3: cout<<"Welcome to ";

 case 4: cout<<"C++ "<< endl; break;

 case 5: cout<<"How ";

 case 6: case 7: case 8: cout<<"are you "<<endl; break;

 case 9: break;

 case 10: cout<<"Have a nice day. "<<endl; break;

 default: cout<<“the number is out of range"<<endl;

 }

 cout<< "Out of switch structure."<<endl;

}

96

home

Example 2

int main() {

 int score;

 char grade;

 cin>>score;

 switch(score/10){

 case 0:case 1:case 2:case 3:case 4:case 5: grade='F';

break;

 case 6: grade = 'D'; break;

 case 7: grade = 'C'; break;

 case 8: grade = 'B'; break;

 case 9: case 10: grade = 'A'; break;

 default: cout<<"Invalid test score."<<endl;

 }

 cout<<"Grade is"<<grade<<endl;

}

97

home

Example 3

int main() {

 char grade;

 cout <<" Enter grade as a letter : " ;

 cin>>grade;

 switch(grade){

 case 'A': cout<<"The Grade is A"; break;

 case 'B': cout<<"The Grade is B"; break;

 case 'C': cout<<"The Grade is C"; break;

 case 'D': cout<<"The Grade is D"; break;

 case 'F': cout<<"The Grade is F"; break;

 default: cout<< "The Grade is invalid";

 }

}

98

home

Example 4

int main(){

 int age;

 cout<<"Enter your age: ";

 cin>>age;

 switch (age >= 18){

 case 1:

 cout<<"old enough to drive"<<endl;

 cout<<"old enough to vote."<<endl;

 break;

 case 0:

 cout<<"Not old enough to drive"<<endl;

 cout<<"Not old enough to vote."<<endl;

 }

}

99

home

Quiz

• Write a program to read two numbers (a and b) and one
character (op). The program then uses switch statement to
print the output according to the table below:

op output

+ a+b

- a-b

* a*b

/ a/b

otherwise "Invalid Operation"

100

home

for Repetition Structure
• General format:

 for (initialization; condition; increment)

 statement;

• Statements will be executed repeatedly while condition is true.

• When the condition become false, the loop will be terminated and

the execution sequence will go the first statement after for loop.

• If the loop body contains only one statement, there is no need to

begin { and end } the loop body.

101

home

for(int c = 1; c <= 5; c++)

cout << c << endl;

for (int i = 1; i <= 5; i++)

 cout<<"Amman\n";

for (int i = 5; i >=1 ; i--)

 cout<<"Amman\n";

1

2

3

4

5

Amman

Amman

Amman

Amman

Amman

Amman

Amman

Amman

Amman

Amman

Examples

102

home

Print the following numbers:

1 3 5 7 9 11

for (int k=1; k<=11; k+=2)

 cout<<k<<"\t";

Print the following numbers

20 17 14 11 8 5 2

for (int m=20; m>=2; m-=3)

 cout<<m<<"\t";

103

home

Print the following numbers

1 2 3 4 … 𝑛 (entered by user)

int main() {

 int n;

 cout<<“Enter the upper limit:";

 cin >> n;

 for (int i=1; i<=n; i++)

 cout<<i<<"\t";

 cout<<endl;

}

104

home

Print the following numbers
𝐚 𝐚 + 𝟏 𝐚 + 𝟐 … 𝐛 (a and b are entered by user)

int main() {

 int a,b;

 cout<<"Enter the start value:";

 cin>>a;

 cout<<"Enter the end value:";

 cin>>b;

 for (int i=a; i<=b; i++)

 cout<<i<<"\t";

}

105

home

Read five numbers from user and print the

positive numbers only

int main() {

 int num;

 for (int i=1; i<=5; i++){

 cout<<"Please Enter No "<<i<<':';

 cin>>num;

 if (num > 0)

 cout<<num<<" is positive\n";

 }

 }

106

home

Compute and print 𝑆 , Where S = 1 + 2 + 3 + 4 + 5

int S=0;

for (int i=1; i<=5; i++)

 S += i;

cout<<"Sum is "<<S<<endl;

Compute and print 𝑆, Where S = 1 + 3 + 5 + 7 + ⋯ + n

int Sum=0, n;

cout<<"Please Enter n";

cin>>n;

for (int i=1; i<=n; i += 2)

 Sum += i;

cout<<"Sum="<<Sum<<endl;

107

home

Compute and print the summation of any 10

numbers entered by the user

int main() {

 int S=0, N;

 for (int i = 10; i >= 1; i--) {

 cout<<"Enter the next number:";

 cin>>N;

 S += N;

 }

 cout<<"Sum = "<< S <<endl;

}

108

home

Compute and Print the factorial of 5, where:

𝑓𝑎𝑐𝑡 5 = 5 × 4 × 3 × 2 × 1

int main() {

 int Fact=1;

 for (int j = 5; j >= 1; j--)

 Fact *= j;

 cout<<"5! = "<<Fact<<endl;

}

109

home

int main() {

 int Fact = 1, n;

cout<<"Enter an integer: ";

 cin>>n;

 for (int j=n; j>=1; j--)

 Fact *= j;

 cout<< n <<"! = "<<Fact<<endl;

}

Compute and Print the factorial of n, where

𝑓𝑎𝑐𝑡 𝑛 = 𝑛 × 𝑛 − 1 × 𝑛 − 2 ×⋯× 1

110

home

Compute and Print the value of M where:

𝑀 = 2×4×6×⋯× 𝑛

int main() {

 long M = 1;

 int n;

 cout<<"please enter the upper Limit:";

 cin>>n;

 for (int i=2; i<=n; i += 2)

 M *= i;

 cout<<"M = "<< M <<endl;

}

111

home

Quiz

• Write a program that prints the numbers from X to Y, with

step Z , using for statement. The program should read

X, Y, Z then start the loop

112

home

Compute and Print 𝑀𝑛

int main() {

 long Result = 1;

 int M, n;

 cout<<"Enter the Base number:";

 cin>>M;

 cout<<"Enter the exponent:";

 cin>>n;

 for (int i=1; i<=n; i++)

 Result *= M;

 cout<<"Result= "<<Result<<endl;

}

113

home

Quiz

• Write a program that finds 𝑀𝑛 for positive and negative 𝑛

114

home

While Repetition Structure

initialization;

while (Condition){

 statements;

 increment;

}

• Statements will be executed repeatedly while condition is true

• When the condition become false, the loop will be terminated

and the execution sequence will go to the first statement after

While loop

• If the loop body contains only one statement, there is no need

to begin { and end } the loop body.

115

home

Print the word "Amman" five times

int main() {

 int i=1;

 while (i<=5){

 cout<<"Amman\n";

 i++;

 }

}

116

home

int main() {

 int i=1;

 while (i++ <= 5)

 cout<<"Amman\n";

 cout<<i<<endl;

}

Print the word "Amman" five times

Amman

Amman

Amman

Amman

Amman

7
117

home

Print the following numbers

1 3 5 7 9 11

int main() {

 int i=1;

 while (i <= 11) {

 cout<<i<<'\t';

 i+=2;

 }

}

118

home

Print the following numbers

20 17 14 … 𝑛

int main() {

 int n, k=20;

 cout<<"Enter the lower limit:";

 cin>>n;

 while (k >= n) {

 cout<<k<<'\t';

 k -= 3;

 }

 cout<<endl;

}

119

home

Read five numbers from the user and print

the positive numbers only

int main() {

 int num, j=0;

 while (j++ < 5) {

 cout<<"Enter a number:";

 cin>>num;

 if (num > 0)

 cout<<num<<endl;

 }

}

120

home

Sum of numbers from x to y;
int main() {

 int sum = 0, i, x, y;

 cout<<"Enter First Number: ";

 cin >> x;

 cout<<"Enter Second Number: ";

 cin >> y;

 i = x;

 while (i <= y) {

 sum = sum + i;

 i = i+1;

 }

 cout<<"Sum from "<<x<<" to "<<y<<" = "<<sum;

}

121

Enter First Number: 5

Enter Second Number: 8

Sum from 5 to 8 = 26

home

Compute and print 𝑠𝑢𝑚, Where

𝑠𝑢𝑚 = 1 + 3 + 5 + 7 + ⋯ + 𝑛

int main() {

 int n, Sum=0, i=1;

 cout<<"Enter the upper limit:";

 cin>>n;

 while (i <= n) {

 Sum += i;

 i += 2;

 }

 cout<<"Sum="<<Sum<<endl;

}

122

home

Read 10 numbers and compute the sum of

numbers divisible by 3

int main() {

 int Num, Sum=0, i=1;

 while (i <= 10) {

 cout<<"Enter a number:";

 cin>>Num;

 if (Num % 3 == 0)

 Sum += Num;

 i++;

 }

 cout<<"\nSum="<<Sum;

}
123

home

Compute and Print the value of M where:

𝑀 = 2×4×6×⋯× 𝑛

int main() {

 int N, M=1, i=2;

 cout<<"Enter the upper limit:";

 cin>>N;

 while (i <= N) {

 M *= i;

 i += 2;

 }

 cout<<"\nM="<<M;

}

124

home

Do While Repetition Structure

initialization

do {

 Statement(s);

} while (Condition) ;

• Statements will be executed repeatedly while condition is true

• When condition become false, the loop will be terminated and

the execution sequence will go to the first statement after the

loop

• The loop body will be executed at least once.

125

home

Print the word "Amman" five times

int main() {

 int i = 1;

 do {

 cout<<"Amman\n";

 i++;

 } while (i <= 5);

}

126

home

Program to read an integer then prints if it is Even or Odd.

The program keeps running until number 1 is entered

int main() {

 int Choice, Num;

 do {

 cout <<"\nEnter a Number: ";

 cin >> Num;

 if (Num%2 == 0)

 cout<<Num<<" is Even\n";

 else

 cout<<Num<<" is Odd\n";

 cout<<"Enter 1 to Exit program\n";

 cout<<"Enter any other number to repeat\n";

 cin>>Choice;

 } while (Choice != 1); }

127

home

int main() {

 int Num;

 char Choice;

 do {

 cout<<"\nEnter a Number: ";

 cin >> Num;

 if (Num%2 == 0)

 cout<<Num<<" is Even\n";

 else

 cout<<Num<<" is Odd\n";

 cout<<"Enter Y to continue\n";

 cout<<“Enter any other character to end program\n";

 cin>>Choice;

 } while (Choice == 'Y');

}

Modifying previous program such that 'Y' is entered to

continue program and any other character to end

128

home

int main() {

 int Num;

 char Choice;

 do {

 cout<<"\nEnter a Number";

 cin >> Num;

 if (Num%2 == 0)

 cout<<Num<<" is Even\n";

 else

 cout<<Num<<" is Odd\n";

 cout<<"Enter Y to continue\n";

 cout<<“Enter any other character to end program\n";

 cin>>Choice;

 } while ((Choice == 'Y') || (Choice =='y'));

}

Modify previous program such that 'Y' or 'y' is entered to

continue

129

home

break Statement

• Immediate exit from while, for, do/while, switch

• Program continues with first statement after structure

• Used to escape early from a loop

• Skip the remainder of switch

130

home

Example
int main(){

 int x;

 for (x = 1; x <= 10; x++) {

 if(x == 5)

 break;

 cout << x << " ";

 }

 cout<<endl;

 cout<<"Broke out of loop when x became "<<x <<endl;

}

1 2 3 4

Broke out of loop when x became 5

131

home

Read a number and print "Prime" if it is a prime

number, or "Not prime" otherwise

int main() {

 bool Prime = true;

 int i, num;

 cout<<"Please enter the number:";

 cin>>num;

 for (i=2; i<num; i++)

 if (num%i==0) {

 Prime = false;

 break;

 }

 if (Prime)

 cout<<num<<" is a Prime number\n";

 else

 cout<<num<<" is not a Prime number\n";

}
132

home

continue Statements

• Used in while, for, do/while

• Skips remainder of loop body

• Proceeds with next iteration of loop

133

home

1 2 3 4 6 7 8 9 10

skipped printing the value 5

Example

int main(){

 for (int x = 1; x <= 10; x++) {

 if(x == 5)

 continue;

 cout << x << " ";

 }

 cout<<endl;

 cout<<"skipped printing the value 5";

}

134

home

Read five numbers from user then print the

positive numbers only (use continue)

int main() {

 int num;

 for (int i=1; i<=5; i++){

 cout<<"Please Enter No "<<i<<':';

 cin>>num;

 if (num < 0)

 continue;

 cout<<num<<" is positive\n";

 }

 }

135

home

Nested for

• for repetition structure that rests entirely within another for

repetition structure

 for(initialization; condition; increment)

 for(initialization; condition; increment)

 statement

• If the outer loop will repeat m times and the inner loop will

repeat n times, then each statement in the inner loop will be

executed m  n times

Inner loop

Outer loop

136

home

for (int i = 1; i <= 5 ; i++){

 for (int j = 1 ; j <= 5 ; j++)
 cout << "*" ;

 cout << endl;

}

Nested for Example 1

* * * * *

* * * * *

* * * * *

* * * * *

* * * * *

137

home

int main(){

 for(int i=1;i<=5;i++){

 for (int j=1;j<=5;j++)

 cout<<i<<","<<j<<" ";

 cout<<endl;

 }

}

Nested for Example 2

1,1 1,2 1,3 1,4 1,5

2,1 2,2 2,3 2,4 2,5

3,1 3,2 3,3 3,4 3,5

4,1 4,2 4,3 4,4 4,5

5,1 5,2 5,3 5,4 5,5
138

home

Draw the following shape:

for (int r = 1 ; r <= 5; r++){

 for (int C = 1; C <= r; C++)

 cout<<'*';

 cout<<endl;

}

*

* *

* * *

* * * *

* * * * *

139

home

for (int r = 1; r <= 5; r++) {

 for (int c = r; c <= 5; c++)

 cout<<'*';

 cout<<endl;

}

Draw the following shape:
* * * * *

* * * *

* * *

* *

*

140

home

for (int i = 1 ; i <= 5; i++){

 for(int k = i ; k < 5 ; k++)

 cout<<" ";

 for (int j = 1; j <= i; j++)

 cout<<'*';

 cout<<endl;

}

Draw the following shape:
 *

 * *

 * * *

 * * * *

* * * * *

141

home

What is the output for the following program

for (int i = 1 ; i <= 5 ; i++){

 for (int j = 1; j <= 5; j++)

 if (i == j)

 cout<<"*";

 else

 if (i+j == 6)

 cout<<"*";

 else

 cout<<" ";

 cout<<endl;

}

* *

* *

*

* *

* *
142

home

Using nested for, display the multiplication

table for the number 3

for (int i=1; i<=10; i++)

 cout<<"3 x "<<i<<" = "<<3*i<<endl;

143

home

 calculate 𝑆, where 𝑆 = 𝑚0 + 𝑚1 + ⋯ + 𝑚𝑛

int main(){

 int s=0,n,m,t;

 cout<<"Enter m please ";

 cin>>m;

 cout<<"Enter n please ";

 cin>>n;

 for (int i = 0 ; i <= n ; i++){

 t = 1;

 for (int j = 1 ; j <= i ; j++)

 t = t * m;

 s = s + t;

 }

 cout<<s<<endl;

}

144

home

Nested while
int main() {

 int j = 1;

 while (j <= 4){

 int i = 1;

 while(i <= 4){

 cout<<'*'<<"\t";

 i++;

 }

 j++;

 cout<<endl;

 }

} * * * *

* * * *

* * * *

* * * *
145

home

int main() {

 int i=1;

 while (i<=5) {

 int j=1;

 while (j<=i){

 cout<<'*';

 j++;

 }

 cout<<endl;

 i++;

 }

}

Draw the following shape using nested while

*

* *

* * *

* * * *

* * * * *

146

home

3 - Functions

147

home

Modular programming with Functions

• Large program can be constructed from smaller pieces

(modules) which are more manageable than the original

program

• Modules in C++ are functions and classes

• Function is a group of statements that is executed when it is

called from some point of the program

• Function can be called multiple times in a program

148

home

Advantages of modular programming

• Functions in C++, make programs

– Easier to understand

– Easier to change

– Easier to write

– Easier to test

– Easier to debug

– Easier for teams to develop

149

home

Pre-packaged and Programmer defined functions

• Pre- packaged functions are provided as part of the C++

programming environment

• available in standard C++ library which provides rich collection

of functions for performing:

– Common mathematical calculations

– String manipulations

– Character manipulations

– Input/output, error checking and many other useful operations

• Programmer defined functions

– Programmer can write functions to define specific tasks

– Could be used at many points in a program

– Actual statements defining the function are written only once

– These statements are hidden from other functions

150

home

Function Libraries

• Predefined functions are found in libraries

• The library must be "included" in a program to make the
functions available

• An include directive tells the compiler which library to include.

• To include the math library containing sqrt():

 #include <cmath>

151

home

Math library functions

• Allow the programmer to perform common mathematical

calculations

• Example: cout << sqrt(49.0);

– Calls the sqrt (square root) function and print 7

– The sqrt function takes an argument of type double and returns

a result of type double, as do all functions in the math library

• Function arguments can be

– Constants: sqrt(4);

– Variables: sqrt(x);

– Expressions: sqrt(3y + 6);

152

home

Commonly used math library functions

Function Description Example

ceil(x) rounds x to the smallest integer not less than x ceil(9.2) returns 10.0

ceil(-9.8) returns -9.0

cos(x) trigonometric cosine of x (x in radians) cos(0.0) returns 1.0

exp(x) exponential function ex exp(1.0) returns 2.71828

exp(2.0) returns 7.38906

fabs(x) absolute value of x fabs(5.1) returns 5.1

fabs(-8.76) returns 8.76

floor(x) rounds x to the largest integer not greater than x floor(9.2) returns 9.0

floor(-9.8) returns -10.0

fmod(x,y) remainder of x/y as a floating-point number fmod(13.657,2.333)returns 1.992

log(x) natural logarithm of x (base e) log(2.718282) returns 1.0

log(7.389056) returns 2.0

log10(x) logarithm of x (base 10) log10(10.0) returns 1.0

log10(100.0) returns 2.0

pow(x,y) x raised to power y (xy) pow(2, 7) returns 128

pow(9,0.5) returns 3

sin(x) trigonometric sine of x (x in radians) sin(0.0) returns 0

sqrt(x) square root of x sqrt(900.0) returns 30.0

sqrt(9.0) returns 3.0

tan(x) trigonometric tangent of x (x in radians) tan(0.0) returns 0

153

home

Example1

#include <iostream>

#include <cmath>

using namespace std;

int main(){

 double x;

 cout<<"enter a number to find its square root: ";

 cin>>x;

 cout<<"square root = "<< sqrt(x);

}

enter a number to find its square root: 25

square root = 5

154

home

#include <iostream>

#include <cmath>

using namespace std;

int main(){

 double A = 6.1,B = 2.3,C = -8.14;

 cout<<"fmod("<<A<<","<<B<<")="<<fmod(A,B)<<endl;

 cout<<"pow(ceil("<<C<<"),2)="<<pow(ceil(C),2)<<endl;

}

Example 2

155

fmod(6.1,2.3) = 1.5

pow(ceil(-8.14),2) = 64

home

Random number generator

• rand(): returns a random integer between 0 and 32767

int main(){

 int x;

 for(int i = 1; i <= 100; i++){

 x = rand();

 cout<<x<<endl;

 }

}

41

18467

6334

26500

19169

15724

11478

29358

26962

24464

156

home

Generate 12 random numbers between 0 and 9

int main(){

 int x;

 for(int i=1;i<=12;i++){

 x = rand()%10;

 cout << x << endl;

 }

}

1

7

4

0

9

4

8

8

2

4

5

5

157

home

Generate 15 random numbers between 1 - 10

int main(){

 int x;

 for(int i=1 ; i <= 15 ; i++){

 x = rand()%10 + 1;

 cout << x << endl;

 }

}

2

8

5

1

10

5

9

9

3

5

6

6

2

8

2

158

home

Generate 10 random numbers between 5 - 7

int main(){

 int x;

 for(int i=1 ; i<=10 ; i++){

 x = rand()%3 + 5;

 cout<<x<<endl;

 }

}

7

7

6

6

7

6

5

5

6

7

159

home

Using srand function
int main(){

 int x,seed;

 cout <<"Enter a seed:";

 cin >>seed;

 srand(seed);

 for(int i=1 ; i<=5 ; i++){

 x = rand();

 cout <<x<< endl;

 }

}

160

Enter a seed:5

54

28693

12255

24449

27660

Enter a seed:11

74

27648

21136

4989

24011

home

Generate 1200 random numbers between 1-6,

then count the occurrence of each number
int main(){

 int x, c1=0, c2=0, c3=0, c4=0, c5=0, c6=0;

 for(int i = 1; i <= 1200 ; i++){

 x = rand()%6 + 1;

 if (x == 1) c1++;

 if (x == 2) c2++;

 if (x == 3) c3++;

 if (x == 4) c4++;

 if (x == 5) c5++;

 if (x == 6) c6++;

 }

 cout<<1<<" : "<<c1<<endl;

 cout<<2<<" : "<<c2<<endl;

 cout<<3<<" : "<<c3<<endl;

 cout<<4<<" : "<<c4<<endl;

 cout<<5<<" : "<<c5<<endl;

 cout<<6<<" : "<<c6<<endl;

}
161

1 : 190

2 : 188

3 : 214

4 : 207

5 : 200

6 : 201

home

Generate 1200 random numbers between 1 and 6,

then print the count of even and odd numbers

int main(){

 int x , even = 0, odd = 0;

 for(int i = 1; i <= 1200 ; i++){

 x = rand() % 6 + 1;

 switch(x) {

 case 1: case 3: case 5:

 odd++;

 break;

 case 2: case 4: case 6:

 even++;

 }

 }

 cout<<"Even count is "<<even<<endl;

 cout<<"Odd count is "<<odd<<endl;

}

162

home

Programmer defined functions

• Functions modularize a program

• function can be called multiple times

– Software reusability

• Local variables

– Known only in the function in which they are defined

– All variables declared in function definitions are local variables

• Parameters

– Local variables passed to function when called

– Provide outside information

163

home

Programmer defined functions

• Each program consists of a function called main

• programmer can write there own customized functions

• Programmer defined functions have 2 important components:

– Function definition

• Describes how function does its task

• Can appear before or after the function is called

– Function prototype

164

home

Function Definition

return-value-type function-name(parameter-list)

{

 declarations and statements

}

• Function-name: any valid identifier

• Return-value-type:

– The data type of the result returned from the function.

– Return value type void indicated that the function does not return a

value

• Parameter-list

– comma-separated list of the arguments

– contains the declarations of the parameters received by the function

when it is called

– If the function does not receive any values, parameter-list is void or

simply left empty

165

home

Example

 int square(int y){ return y * y; }

• return keyword

– Format return expression;

– Returns the value calculated by the function

– Returns data, and control goes to function's caller

• If no data to return, use return;

– Function ends when reaches right brace

• Control goes to caller

• Functions cannot be defined inside other functions

166

home

Function Prototype

• Must appear in the code before the function can be called

• The compiler use function prototypes to validate function call

• Format:

 Return-type Function_Name(Parameter_List);

• Function prototype tells the compiler

– The function's name

– Type of data returned by the function (void if return nothing)

– Number of parameters the function accepts to receive

– Types of parameters

– The order in which these parameters are expected

167

home

Function prototype

• Function prototype is not required if the function definition

appears before the first use function's first use in the program

• Prototype must match function definition

– Function prototype

double max(double, double, double);

– Definition

double max(double x, double y, double z)

{

 …

}

168

home

Forms of functions

• Functions that take inputs and returns output:

– double square(double)

– int max(int a, int b, int c)

• Functions that take inputs but don't return output

– void Printsum(int x, int y)

• Functions that don't take any inputs but returns an output:

– int Read_number(void);

• Functions that don't take and inputs and don't return any input

– void Print_hello(void);

169

home

Function call

• Function is invoked by function call

• A function call specifies the function name and provides

information (as arguments) that the called function needs

• Functions called by writing

– functionName(argument);

or

– functionName(argument1, argument2, …);

• The argument can be a constant, variable or expression

170

home

Example program

int square(int); //function prototype

int main() {

 for (int x = 1; x <= 7; x++)

 cout <<square(x)<<" ";//function call

 cout << endl;

}

int square(int y) { //function definition

 return y * y;

}

1 4 9 16 25 36 49

171

home

Example Program
double maximum(double, double, double); //function prototype

int main() {

 double n1;

 double n2;

 double n3;

 cout << "Enter three floating-point numbers:";

 cin >> n1 >> n2 >> n3;

 cout << "Maximum is: "<< maximum(n1,n2,n3)<<endl;

}

double maximum(double x, double y, double z) {

 double max = x;

 if (y > max)

 max = y;

 if (z > max)

 max = z;

 return max;

}
Enter three floating-point numbers:7.1

2.9

5.5

Maximum is: 7.1

172

home

Function signature

• Function signature is also called simply signature

• It is the portion of a function prototype that includes

– name of function

– parameters (types of its argument)

• Example

double maximum(double, double, double);

Function signature

173

home

Argument Correction

• Argument values that do not correspond precisely to the parameter

types are converted to proper type before the function is called

• cout<<sqrt(4)

– the compiler converts int value 4 to the double value 4.0

before the value is passed to sqrt

• Changing from double to int can truncate data e.g. 3.5 to 3

• Some of the conversions may lead to incorrect results if proper

promotion rules are not followed

174

home

Promotion rules

• How types can be converted to other types without losing data

• Applies to expressions containing values of two or more data types
in which, type of each value is promoted to the highest type in the

expression

• Also used when the type of an argument to a function does not

match the parameter type specified in the function definition

• Converting values to lower type can result in incorrect values

175

home

Promotion hierarchy for built in data types

Data types

long double

double

float

unsigned long

long

unsigned

int

unsigned short

Short

unsigned char

char

bool

176

home

Type casting

• A value can be converted to a lower type only by explicitly assigning

the value to a variable of lower type by using the cast operator

• Example: static_cast<double>(total)// total is of type integer

– produces a double representing the integer value of the

variable total (operand in parenthesis)

– double is higher type and int is lower type

• Converting values to lower type can result in incorrect values

177

home

Header Files

• Library header file

– Contain function prototypes for library functions

– Definition of various data type and constants needed by library

functions

– Examples: <cstdlib> , <cmath> ,<iostream>.

– Load with #include<filename>: #include<cmath>

• Custom header files

– Defined by the programmer

– Save as filename.h

– Included in a program using #include preprocessor directive

– Example: #include "square.h" //programmer defined header file

• The programmer defined header file should end with .h

178

home

double area(double, double);

void main(){

 double L,W,A;

 cout<<"Enter the length:";

 cin>> L;

 cout<<"Enter the width:";

 cin>> W;

 A = area(L,W);

 cout<<"The area of the rectangle is "<<A<<endl;

}

double area(double X,double Y){

 double Z;

 Z = X*Y;

 return Z;

}

Write a function that takes the length and width

of a rectangle and returns the area

179

home

int max(int, int, int);

int main(){

 int x, y, z;

 cout<<"Enter 3 numbers please :";

 cin>> x >> y >> z;

 cout<<"The Maximum is "<< max(x,y,z) <<endl;

}

int max(int a,int b,int c){

 int m = a;

 if (m < b) m=b;

 if (m < c) m=c;

 return m;

}

Write a function that takes three integers and

returns the maximum one

Enter 3 numbers please :5

9

6

The Maximum is 9
180

home

bool prime(int);

int main(){

 int x;

 cout << "Enter a number please :";

 cin >> x;

 if (prime(x))

 cout<< x <<" is a prime number\n";

 else

 cout << x <<" is not a prime number\n";

}

bool prime(int a){

 bool p = true;

 for(int i=2 ;i < a); i++)

 if (a%i == 0){ p = false; break; }

 return p;

}

Write a function that takes an integer and returns

true if it is a prime number and false otherwise

181

home

Write a program that uses a function to calculate and

print the sum of two numbers.

void print_sum(int,int);

int main() {

 int x,y;

 cout<<"Enter two numbers please :";

 cin>>x>>y;

 print_sum(x,y);

 print_sum(y,x);

 print_sum(5,7);

}

void print_sum(int x , int y){

 int s;

 s = x + y;

 cout<<x<<"+"<<y<<" = "<<s<<endl;

}

182

home

void read_number();

void print_sum(int,int);

int main(){

 read_number();

}

void read_number(){

 int A , B;

 cout<<"Enter two numbers please ";

 cin>>A>>B;

 print_sum(A , B);

}

void print_sum(int x,int y){

 int s;

 s = x + y;

 cout<<x<<"+"<<y<<" = "<<s<<endl;

}

Write a function that reads two numbers and

another function to prints their sum

183

home

Write a function that prints one of three messages

randomly

void print_message();

int main(){

 for(int i = 1 ; i <= 10 ; i++)

 print_message();

}

void print_message() {

 int i = rand()%3 + 1;

 if(i == 1) cout<<"Hello\n";

 if(i == 2) cout<<"Hi\n";

 if(i == 3) cout<<"Welcome\n";

}

184

home

Scope Rules

• Scope

– Portion of program where identifier can be used

• Scopes for an identifier are

– Function scope

– File scope

– Function prototype scope

– Block scope

– Class scope

– namespace scope

185

home

Scope Rules

• Function scope

– Can only be referenced inside function in which they appear, can

not be referenced outside function body

• File scope

– Defined outside a function, known in all functions

– Global variables, function definitions and prototypes all have file

scope

• Function-prototype scope

– Names in function prototype are optional, only type required

– Compiler ignores the name if used in parameter list of function-

prototype

– In a single prototype, name can be used once

– Identifier used in function prototype can be reused elsewhere in

the program

 186

home

Scope Rules

• Block scope

– Identifiers declared inside the block

– Begins at declaration, ends at right brace } of the block

• Can only be referenced in this range

– Local variables, function parameters

– In case of nested blocks and identifiers in inner and outer

block have same name

• Identifier in the outer block is hidden until the inner block

terminates

187

home

Unary Scope Resolution Operator

• Unary scope resolution operator (::)

– Access global variable if local variable of same name is in

scope

– Not needed if names are different

– Use ::variable

 y = ::x + 3;

– Can not be used to access a local variable of same name in an

outer block

– Good to avoid using same names for local and global variables

188

home

Example Program
int x = 10;

int f1(int);

int main(){

 cout << x << endl;

 int x = 15;

 cout << x << endl;

 cout << ::x << endl;

 if (true){ int x = 5; cout << x << endl; }

 cout << x << endl;

 cout << f1(x) << endl;

 cout << ::x << endl;

}

int f1(int a){

 cout << x << endl;

 x = x - a;

 int x = 13;

 cout << x << endl;

 return x + a;

}

10

15

10

5

15

10

13

28

-5

189

home

Reference Variables (Alias)

• A reference variable is an alias (another name) for an

already existing variable

• Once a reference is initialized with a variable, either the

variable name or the reference name may be used to refer

to the variable.

• Example

 int x = 4;

 int &y = x;

– y is an alias for variable x

– x and y both refer to same variable (same memory location)

y, x 4

190

home

Example

int main(){

 int x;

 int &y = x; //y is an alias for x

 x = 5;

 cout<<"x = "<< x <<"\t"<<"y = "<< y << endl;

 y = 7;

 cout<<"x = "<< x <<"\t"<<"y = "<< y << endl;

}

x = 5 y = 5

x = 7 y = 7
191

home

Call By Value and Call By Reference

• When passing a parameter by value, the function receives

a copy of the variable, so it can't modify the variable

 void function(int var);

• When passing a parameter by reference, the function

receives a reference to the variable (not a copy of it), so it

can modify the variable

 void function(int &var);

192

home

Example
void square1(int);

void square2(int &);

int main() {

 int x,y;

 cout<<"Enter a number:";

 cin>>x;

 square1(x);

 cout<< "calling x by value, x = " << x <<endl;

 square2(x);

 cout<< "calling x by ref, x = " << x <<endl;

}

void square1(int a) { // call by value, int a = x

 a = a * a; }

void square2(int &a){//call by reference, int &a = x

 a = a * a; }

Enter a number: 10

calling x by value, x = 10

calling x by ref, x = 100
193

home

void read(int &, int);

int main(){

 int x = 0, y = 0;

 read(x , y);

 cout <<"x = " << x << endl;

 cout <<“y = " << y << endl;

}

void read(int &a , int b){

 cout <<"Enter two numbers:\n";

 cin >> a >> b;

}

Example

Enter two numbers:

6

4

x = 6

y = 0
194

home

Static Variables

• Local variables in function declared with keyword static

• Keeps value between function calls

• Only known in own function

• Static local variables retain their values when function is

exited

195

home

Example
void f();

int main(){

 f();

 f();

 f();

}

void f(){

 static int a = 1;

 int b = 1;

 cout <<"a = "<< a++ <<"\tb = "<< b++ <<endl;

}

a = 1 b = 1

a = 2 b = 1

a = 3 b = 1
196

home

Default arguments

• default argument provide a value to be used instead of
omitted parameters in function call

• Default value is automatically used by the compiler and
passed in to the function

• If not enough parameters, rightmost go to their defaults

• Default argument should be specified in the first occurrence
of the function name, typically prototype

197

home

Eample

int f(int x=1 , int y=2 , int z=4);

int main() {

 cout << f() <<endl;

 cout << f(3) <<endl;

 cout << f(3,4) <<endl;

 cout << f(6,8,1) <<endl;

}

int f(int x, int y , int z){

 return x + y + z;

}

7

9

11

15

198

home

Recursive functions

• A recursive function is a function that makes a call to itself

• May result in a infinite recursion

• Typical problems solved using recursion

– Factorial

– Fibonacci series

– Sum between X, Y

199

home

Recursive Factorial

int fact(int);

int main(){

 int x;

 cout << "Enter a number:";

 cin >> x;

 cout << x <<"! = " << fact(x) <<endl;

}

int fact(int n){

 if (n == 1)

 return 1;

 else

 return n*fact(n-1);

}

Enter a number:4

4! = 24

200

home

Fibonacci Series

• 0 , 1 , 1 , 2 , 3 , 5 , 8 , 13 , 21 , 34 , …

• 𝑓𝑖𝑏 0 = 0

• 𝑓𝑖𝑏 1 = 1

• 𝑓𝑖𝑏 𝑛 = 𝑓𝑖𝑏 𝑛 − 1 + 𝑓𝑖𝑏(𝑛 − 2)

201

home

int fib(int);

int main(){

 int x;

 cout << "Enter a number:";

 cin >> x;

 cout << "Fibonacci("<<x<<") = "<< fib(x) << endl;

}

int fib(int n){

 if(n == 0 || n == 1)

 return n;

 else

 return fib(n-1) + fib(n-2);

 }

Enter a number:7

Fibonacci(7) = 13

Fibonacci Series

202

home

Sum of numbers from 1 to n

int sum(int);

void main() {

 int x;

 cout<<"Enter end number: ";

 cin>>x;

 cout<<"Sum of the series = "<<sum(x)<<endl;

}

int sum(int n) {

 if (n == 1)

 return 1;

 else

 return n + sum(n - 1);

}

Enter end number: 3

Sum of the series = 6

203

home

Sum of numbers from X to Y

 int sum(int , int);

int main(){

 int x, y;

 cout<<"Enter first number:";

 cin>> x;

 cout<<"Enter second number:";

 cin>> y;

 cout<<"Sum of the series = "<<sum(x,y)<<endl;

}

int sum (int a ,int b){

 if (a == b)

 return b;

 else

 return b + sum(a , b-1);

}

Enter first number:5

Enter second number:7

Sum of the series = 18
204

home

Function Overloading

• C++ enables several functions of the same name to be

defined

– as long as they have different signatures

• The C++ compiler selects the proper function to call by

examining the number, types and order of the arguments

in the call

• Overloaded functions are normally used to perform

similar operations that involve different program logic on

different data types

205

home

Example

int square(int x) {

 cout << "square of integer " << x << " is ";

 return x * x;

}

double square(double y) {

 cout << "square of double " << y << " is ";

 return y * y;

}

int main(){

 cout << square(5)<< endl;

 cout << square(5.0)<<endl;

}

square of integer 5 is 25

square of double 5 is 25

206

home

Inline Functions

• Keyword inline before function return type

– Asks the compiler to copy code into program instead of

making function call

• Reduce function-call overhead

• Compiler can ignore inline

– Good for small, often-used functions

• Example

 inline double cube(double s){ return s*s*s; }

207

home

Example

inline double cube(double s) { return s* s* s }

int main(){

 double side;

 cout<<"Enter the side length of your cube: ";

 cin >> side;

 cout << "Volume of cube = "<<cube(side)<<endl;

}

208

home

04 - Arrays

209

home

Array

• Set of adjacent memory locations of the same data type.

• All of them have one name, which is the array name.

• each location has subscript number starts at zero.

• One Dimensional array

 Data_Type array_name[size]

 int a[10]

• Two Dimensional array

 Data_Type array_name[Rows][Columns]

 int a[3][4]

210

home

List[0] 100

List[1] 30

List[2] 10

List[3] -20

List[4] 5

100 30 10 -20 5

One Dimensional array Example

int List[5];

List[0] = 100;

List[1] = 30;

List[2] = 10;

List[3] = -20;

List[4] = 5;

for(i=0; i < 5; i++)

 cout<<List[i]<<"\t";

211

home

Definitions and initial values

int X[4]={4,2,3,1};

int A[10]={0};

int B[100]={1};

int C[7]={1,2,6};

int d[5];

int E[]={4,6,2};

Not accepted Statements

int A[4]={4,2,4,5,2};

int E[];

212

home

int main() {

 int A[3] = {10,20,15};

 cout<<"Print Array:";

 for (int i=0 ; i<3 ; i++)

 cout << A[i] << '\t';

 cout<<endl;

 for (int i=0 ; i<3 ; i++) {

 cout << "Enter A["<<i<<"]:";

 cin >> A[i];

 }

 cout<<"Print Array:";

 for (int i=0 ; i<3 ; i++)

 cout << A[i] << '\t';

}

Read and print an Array

Print Array:10 20 15

Enter A[0]:3

Enter A[1]:7

Enter A[2]:1

Print Array:3 7 1

213

home

const int S = 10;

int main() {

 int A[S];

 for(int i=0 ; i<S ; i++) {

 cout << "Enter A[" << i << "]:";

 cin >> A[i];

 }

 int count = 0;

 for (int i = 0; i < S; i++) {

 if (A[i] > 10)

 count++;

 }

 cout<< "No of element > 10 = "<<count <<endl;

}

Write a program that inputs an array elements then

prints the count of elements greater than 10

214

home

const int S = 5;

int main() {

 int A[S];

 for(int i=0; i < S; i++) {

 cout<<"Enter A["<<i<<"]:";

 cin>>A[i];

 }

 long even = 1;

 for (int i = 0; i < S; i++)

 if(i % 2 == 0)

 even *= A[i];

 cout<<"Multiplying elements in Even positions = "<<even;

}

Multiplying elements in even positions

Enter A[0]:2

Enter A[1]:6

Enter A[2]:1

Enter A[3]:11

Enter A[4]:3

Multiplying elements in Even positions = 6
215

home

Find the Maximum element

const int Size = 5;

int main() {

 int V[Size];

 cout<<"Enter 5 numbers to find the maximum\n";

 for(int i = 0; i < Size; i++)

 cin >> V[i];

 int Max = V[0];

 for(int i = 1; i < Size; i++)

 if (Max < V[i])

 Max = V[i];

 cout<<"Max = "<< Max <<endl;

}

Enter 5 numbers to find the maximum

14

11

23

7

19

Max = 23
216

home

const int Size = 5;

int main() {

 int V[Size];

 cout<<"Enter 5 numbers to find the maximum\n";

 for(int i = 0; i < Size; i++)

 cin >> V[i];

 int Max = V[0];

 int pos = 0;

 for(int i = 1; i < Size; i++)

 if (Max < V[i]) {

 Max = V[i];

 pos = i;

 }

 cout<<"Max= "<<Max<<" at position "<<pos<<endl;

}

Find the Maximum element

Enter 5 numbers to find the maximum

14

11

23

7

19

Max = 23 at position 2
217

home

Array Search using Linear Search
int main() {

 int V[5]={7,12,5,31,4}, Element, i;

 cout << "Enter the element to search for:";

 cin >> Element;

 bool Found = false;

 for(i = 0; i < 5; i++)

 if(Element == V[i]){

 Found = true;

 break;

 }

 if (Found)

 cout<<Element<<" Found at position "<<i<<endl;

 else

 cout<<Element<<" is not in the array \n";

}

Enter the element to search for:18

18 is not in the array

Enter the element to search for:5

5 Found at position 2
218

home

Swap Function

void swap(int &,int &);

int main(){

 int a = 2, b = 9;

 cout<<"a = "<<a<<'\t'<<"b = "<<b<<endl;

 swap(a,b);

 cout<<“\nAfter Swap\n";

 cout<<"a = "<<a<<'\t'<<"b = "<<b<<endl;

}

void swap(int &x , int &y) {

 int temp = x;

 x = y;

 y = temp;

}

a = 2 b = 9

After Swap

a = 9 b = 2
219

home

Array Sort with Bubble Sort

void swap(int &, int &);

const int Size = 5;

int main() {

 int V[Size] = {5,9,7,4,3};

 for(int i = 1 ; i < Size; i++)

 for(int j = 0 ; j < Size-i; j++)

 if(V[j] > V[j+1])

 swap(V[j], V[j+1]);

 cout<<"Array after Sort:\n";

 for(int i = 0; i < Size; i++) cout<< V[i]<<'\t';

}

void swap(int &x , int &y) {

 int temp = x;

 x = y;

 y = temp;

}

Array after Sort:

3 4 5 7 9
220

home

• i = 1:

– j = 0

– j = 1

– j = 2

– j = 3

• i = 2:

– j = 0

– j = 1

– j = 2

• i = 3:

– j = 0

– j = 1

• i = 4:

– j = 0

5 9 7 4 3

5 9 7 4 3

5 7 9 4 3

5 7 4 9 3

5 7 4 3 9

5 7 4 3 9

5 4 7 3 9

5 4 3 7 9

4 5 3 7 9

4 3 5 7 9

3 4 5 7 9

221

if(V[j] > V[j+1])

 swap(V[j],V[j+1]);

home

• i = 1:

– j = 0

– j = 1

– j = 2

– j = 3

• i = 2:

– j = 0

– j = 1

– j = 2

• i = 3:

– j = 0

– j = 1

• i = 4 :

– j = 0

5 4 3 2 1

4 5 3 2 1

4 3 5 2 1

4 3 2 5 1

4 3 2 1 5

3 4 2 1 5

3 2 4 1 5

3 2 1 4 5

2 3 1 4 5

2 1 3 4 5

1 2 3 4 5

222

if(V[j] > V[j+1])

 swap(V[j],V[j+1]);

home

Passing Arrays to functions

• When passing an array to a function, it is passed by

reference.

• No need to declare add the & operator

223

home

Sum of Array elements

int Sum(int [],int);

int main() {

 int A[5]={2,3,4,5,6};

 int B[4]={5,3,1,7};

 cout<<"The sum of A is "<<Sum(A,5)<<endl;

 cout<<"The sum of B is "<<Sum(B,4)<<endl;

}

int Sum(int x[],int size){

 int S = 0;

 for(int i = 0 ; i < size ; i++)

 S = S + x[i];

 return S;

}
The sum of A is 20

The sum of B is 16

224

home

Read and print Arrays

void read(int [], int);

void print(int[], int);

int main(){

 int A[5] , B[4];

 read(A,5);

 read(B,4);

 print(A,5);

 print(B,4);

}

void read(int x[], int size){

 for(int i = 0 ; i < size ; i++){

 cout<<"Enter a number please:";

 cin >> x[i];

 }

}

void print(int x[], int size){

 for(int i = 0 ; i < size ; i++)

 cout << x[i]<<" ";

}
225

home

Sum of two Arrays

void sum (int [], int [], int[], int);

void print(int [], int);

void main() {

 int a[4]={4,3,2,1};

 int b[4]={2,2,4,4};

 int c[4];

 sum(a,b,c,4);

 print(c,4);

}

void sum(int x[], int y[], int z[], int size){

 for (int i = 0 ; i < size ; i++)

 z[i] = x[i]+y[i];

}

void print(int x[] , int size){

 for(int i = 0 ; i < size ; i++)

 cout << x[i]<<" ";

}

226

home

0 1 2 3

0 100

1 30 10

2 10 -20

Two Dimensional array

• Declare a 3 by 4 array
int Matrix[3][4];

• Assign values to array Elements
 Matrix[0][1]= 30;

 Matrix[1][0]= 100;

 Matrix[1][2]= 10;

 Matrix[2][3]= -20;

 Matrix[2][0]= Matrix[1][2];

• Print Elements
 for(int i=0 ; i < 3 ; i++){

 for(int j = 0 ; j < 4 ; j++)

 cout << Matrix[i][j] << "\t";

 cout << endl;

 }

227

home

int A[2][3] = {1,2,3,10,20};

int M[3][4]= {{4,30},{100,5,10},{1,7,2,-20}};

2D Array Initialization

228

0 1 2

0 1 2 3

1 10 20 0

0 1 2 3

0 4 30 0 0

1 100 5 10 0

2 1 7 2 -20

home

int main() {

 int A[2][3]={ {1,2}, {4,5,6} }, B[2][3]={1,2,4,5,6};

 for(int i=0; i<2; i++){

 for(int j=0; j<3; j++)

 cout<<A[i][j]<<'\t';

 cout<<endl;

 }

 cout<<"\n\n";

 for(int i=0; i<2; i++){

 for(int j=0; j<3; j++)

 cout<<B[i][j]<<'\t';

 cout<<endl;

 }

}

1 2 0

4 5 6

1 2 4

5 6 0

Example 1

229

home

const int R = 2, C = 3;

int main() {

 int A[R][C];

 for (int i=0; i < R ; i++)

 for (int j=0; j < C ; j++) {

 cout<<"Enter A["<<i<<"]["<<j<<"]:";

 cin>>A[i][j];

 }

 for (int i=0; i < R; i++){

 for(int j=0; j < C ; j++)

 cout<<A[i][j]<<'\t';

 cout<<endl;

 }

}

Example 2

Enter A[0][0]:1

Enter A[0][1]:6

Enter A[0][2]:7

Enter A[1][0]:3

Enter A[1][1]:5

Enter A[1][2]:2

1 6 7

3 5 2

230

home

Sum of 2D Array elements
int sum(int [][2], int);

int main(){

 int x[3][2]={6,5,4,3,2,1};

 int y[4][2]={5,4,3,2,3,4,1};

 cout<<"The sum of array x is " <<sum(x,3)<<endl;

 cout<<"The sum of array y is " <<sum(y,4)<<endl;

}

int sum(int a[][2],int r){

 int s = 0;

 for(int i = 0 ;i < r ; i++)

 for(int j = 0 ; j < 2 ; j++)

 s += a[i][j];

 return s;

}

231

The sum of array x is 21

The sum of array y is 22

home

Diagonal Sum

int Dsum(int [][3]);

int main() {

 int A[3][3] = {{1,2,3}, {4,5,6}, {7,8,9}};

 cout<<"Diagonal Sum = "<<Dsum(A)<<endl;

}

int Dsum(int a[][3]) {

 int S=0;

 for (int i=0 ; i<s ; i++)

 S += a[i][i];

 return S;

}

Diagonal Sum = 15

232

home

Inverse Diagonal Sum = 21

Inverse Diagonal Summation

const int R = 3, C = 3;

void main() {

 int A[R][C]= {{1,2,3}, {6,11,7}, {7,3,9}};

 int DSum = 0;

 for (int i=0 ; i < R ; i++)

 for (int j=0; j < C ; j++)

 if (i+j == 2)

 DSum += A[i][j];

 cout<<"Inverse Diagonal Sum = "<<DSum<<endl;

}

233

home

Lower Triangular Multiplication = 224

0,0 0,1 0,2

1,0 1,1 1,2

2,0 2,1 2,2

Lower Triangular Multiplication

const int R = 3, C = 3;

int main() {

 int A[R][C] = { {1,2,3},

 {4,5,6},

 {7,8,9}};

 long m = 1;

 for (int i=0; i < R; i++)

 for(int j=0; j<i; j++)

 m *= A[i][j];

 cout<<"Lower Triangular Multiplication =

"<<m<<endl;

}

234

home

Lower Triangular Mul. = 48

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

Lower Triangular Multiplication

const int R = 4, C = 4;

int main() {

 int A[R][C] = { {6,2,3,4},

 {4,2,3,4},

 {1,2,3,4},

 {1,2,3,4}};

 long m = 1;

 for (int i=0; i < R; i++)

 for(int j=0; j < C; j++)

 if (i > j)

 m *= A[i][j];

 cout<<"Lower Triangular Mul. = "<<m<<endl;

}

235

home

Copy one array to another

const int R = 4, C= 3;

int main() {

 int A[R][C] = {{1,1,1}, {2,2,2}, {3,3,3}, {4,4,4} };

 int B[R][C];

 for(int i = 0 ; i < R ; i++)

 for(int j = 0 ; j < C ; j++)

 B[i][j] = A[i][j];

 for(int i=0; i < R; i++){

 for(int j = 0 ; j < C ; j++)

 cout<< B[i][j] <<'\t';

 cout<<endl;

 }

}
1 1 1

2 2 2

3 3 3

4 4 4
236

home

* $ $ $

* $ $

* $

*

Store the following symbols in an array

const int R = 4, C = 4;

int main() {

 char Symbol[R][C];

 for (int i=0 ; i < R ; i++)

 for (int j=0 ; j < C ; j++)

 if (i == j)

 Symbol[i][j] = '*';

 else

 if (i > j)

 Symbol[i][j] = '#';

 else

 Symbol[i][j] = '$';

}

237

home

5 7 9 11

8 12 14 16

18 11 15 14

Matrix Summation
const int R = 3, C = 4;

int main() {

 int A[R][C] = {{1,2,3,4}, {5,6,7,8}, {9,10,11,12}};

 int B[R][C] = {{4,5,6,7}, {3,6,7,8}, {9,1,4,2}};

 int C[R][C];

 for(int i = 0 ; i < R ; i++)

 for(int j = 0; j < C ; j++)

 C[i][j] = A[i][j] + B[i][j];

 for(int i = 0 ; i < R ; i++){

 for(int j = 0 ; j < C ; j++)

 cout<<C[i][j]<<'\t';

 cout<<endl;

 }

}

238

home

Compute the average for 2 marks for 3 students
int main() {

 int marks[3][2];

 for(int i = 0 ; i < 3 ; i++){

 for(int j = 0 ; j < 2 ; j++){

 cout <<"Enter mark "<<j+1<<" for student "<<i+1<<" : ";

 cin>>marks[i][j];

 }

 cout<<endl;

 }

 float avg[3];

 for(int i = 0 ; i < 3; i++){

 float sum = 0;

 for(int j = 0 ; j < 2 ; j++)

 sum = sum + marks[i][j];

 avg[i] = sum/2;

 }

 for(int i = 0 ; i < 3 ; i++)

 cout <<"Average of Student "<<i+1<<" = "<<avg[i]<<endl;

}

Enter mark 1 for student 1 : 5

Enter mark 2 for student 1 : 7

Enter mark 1 for student 2 : 3

Enter mark 2 for student 2 : 4

Enter mark 1 for student 3 : 6

Enter mark 2 for student 3 : 11

Average of Student 1 = 6

Average of Student 2 = 3.5

Average of Student 3 = 8.5

239

home

Transpose

Original Array:

1 2 3 4

5 6 7 8

9 10 11 12

Transpose:

1 5 9

2 6 10

3 7 11

4 8 12

int main(){

 int A[3][4]={{1,2,3,4} ,{5,6,7,8} ,{9,10,11,12}};

 cout<<"Original Array:\n";

 for(int i = 0 ; i < 3 ; i++){

 for(int j = 0 ; j < 4 ; j++)

 cout<<A[i][j]<<"\t";

 cout<<endl;

 }

 int B[4][3];

 for(int i = 0 ; i < 3 ; i++)

 for(int j = 0 ; j < 4 ; j++)

 B[j][i]=A[i][j];

 cout<<"\nTrnspose:\n";

 for(int i = 0 ; i < 4 ; i++){

 for(int j = 0 ; j < 3 ; j++)

 cout<<B[i][j]<<"\t";

 cout<<endl;

 }

}

240

home

5 - Pointers

241

home

Pointer Variables

• Variables contain a specific value (direct reference)

• Pointers variables contain the address of a variable that has a
specific value (indirect reference)

 int *ptr

– * indicates that variable ptr is a pointer

– the pointer ptr point to an int variable

• Multiple pointers require multiple asterisks:

 int *ptr1, *ptr2;

• Can declare pointers to any data type

• Pointers can be initialized to 0, NULL, or an address

– 0 or NULL points to nothing

242

home

Pointer Operators
int y = 5;

int *yPtr;

yPtr = &y;// yPtr gets address of y

• & (address operator)

– returns the address of its operand

– yPtr points to y: address of y is value of yptr
 cout << &y; //prints 600

• * (indirection/dereferencing operator)

– returns the value of what its operand points to

– *yPtr returns the value of y (because yPtr points to y).

– * can be used to assign a value to a location in memory

*yptr = 7; // changes y to 7

• * and & are inverses they cancel each other out

Address value Name

600 5 y

500 600 yptr

243

home

int main() {

 int a = 7, *aPtr = &a;

 cout << "address of a is " << &a << endl;

 cout << "value of aPtr is " << aPtr << endl;

 cout << "value of a is " << a <<endl;

 cout << "value of *aPtr is " << *aPtr<<endl;

 cout << "* and & are inverses of each other\n";

 cout <<"&*aPtr = "<<&*aPtr<<endl;

 cout<<"*&aPtr = "<<*&aPtr<<endl;

}

address of a is 0xedfe0c

value of aPtr is 0xedfe0c

value of a is 7

value of *aPtr is 7

* and & are inverses of each other

&*aPtr = 0xedfe0c

*&aPtr = 0xedfe0c

Example 1

244

home

int main() {

 int a = 10, b = 20, *ptr_a, *ptr_b;

 ptr_a = &a;

 ptr_b = &b;

 cout<<*ptr_a<<"\t"<<*ptr_b<<endl;

 a += 10;

 b += 20;

 cout<<*ptr_a<<"\t"<<*ptr_b<<endl;

 ++*ptr_a;

 ++*ptr_b;

 cout<<a<<"\t"<<b<<endl;

 ptr_a = ptr_b;

 cout<<*ptr_a<<"\t"<<*ptr_b<<endl;

}

10 20

20 40

21 41

41 41

Example 2

245

home

Pass by Reference with Pointers

• There are three ways in C++ to pass arguments to a functions:

– Pass by value

– Pass by reference with reference arguments

– Pass by reference with pointer arguments.

• Pointers can be used to accomplish pass by reference, for example:

 void f(int *n){ *n = 2 * *n; }

 int main(){

 int x = 2 , y = 4 , *p = &y;

 f(&x);

 f(p);

 cout<<x<<endl<<y;

 }

• A pointer to an int or an address of an int variable can be passed to

function f

4

8

246

home

void increment(int *);

int main(){

 int x = 2 , *p = &x;

 cout<<"original value of x = "<<x<<endl;

 cube(&x);

 cout<<"new value of x = "<< x <<endl;

 cube(p);

 cout<<"new value of x = "<< x <<endl;

}

void increment(int *n){

 *n = *n + 1;

}

original value of x = 2

new value of x = 3

new value of x = 4

Pass by reference with pointers

247

home

Pointer Expressions and Pointer Arithmetic

• Pointer arithmetic

– Increment/decrement pointer (++ or --)

– Add/subtract an integer to/from a pointer(+ or += , - or -=)

• Pointer arithmetic is meaningless unless performed on an

array

248

home

Pointer Expressions and Pointer Arithmetic

• Subtracting pointers

– Returns the number of elements between two addresses

 vPtr2 = &v[2];

 vPtr = &v[0];

 vPtr2 - vPtr will return 2

• Pointer comparison

– Test which pointer points to the higher numbered array element

– Test if a pointer points to 0 (NULL)

if (vPtr == 0)

 statement

249

home

Pointer Expressions and Pointer Arithmetic

• Pointers assignment

– If not the same type, a cast operator must be used

– Exception: pointer to void (type void *)

• Generic pointer, represents any type

• No casting needed to convert a pointer to void pointer

• void pointers cannot be dereferenced

250

home

Pointers and Arrays

• Array name is a constant pointer, it always points to the beginning

of the array.

• Example: int b[5] , *bPtr = b; //or bPtr = &b[0]

– bPtr points to to the first element of array b (bPtr equals address of

first element of b)

• Accessing array elements with pointers

– Element b[n] can be accessed by *(bPtr+n)

• Called pointer/offset notation

– Array itself can use pointer arithmetic.

• b[3] same as *(b+3)

– Pointers can be subscripted (pointer/subscript notation)

• bPtr[3] same as b[3]

251

home

Arrays and Pointers
int main() {

 int a[5] = {2,5,7,4,3}, *p = a;

 cout<<"printing array in different ways:\n";

 for(int i=0;i<5;i++) cout<<*(a+i)<<"\t";

 cout<<endl;

 for(int i=0;i<5;i++) cout<<*(p+i)<<"\t";

 cout<<endl;

 for(int i=0;i<5;i++) cout<<p[i]<<"\t";

 cout<<endl;

 for(int i=0;i<5;i++) cout<<*p++<<"\t";

}
printing array elements in different ways:

2 5 7 4 3

2 5 7 4 3

2 5 7 4 3

2 5 7 4 3
252

home

Array name is a static pointer

float V[3]={3.2 , 2.1 , 6.7};

Address Value Name

.

.

.

V[0] 3.2 0xedfdf0

2.1 0xedfdf4 V[1]

6.7 0xedfdf8 V[2]

float *ptr = V; //ptr=&V[0];

cout<<"Value of V: "<< V <<endl;

cout<<"Value of ptr: "<< ptr <<endl;

for (int i=0 ; i<3 ; i++){

 cout<< ptr <<“ : "<< *ptr <<endl;

 ptr++;

}

cout<<"Address of V[0]: "<< &V[0] <<endl;

ptr 0xedfdd8 0xedfdf0

Value of ptr: 0xedfdf0

Address of V[0]: 0xedfdf0

0xedfdf0 : 3.2

0xedfdf4 : 2.2

0xedfdf8 : 6.2

Value of V: 0xedfdf0

253

home

Check for identical arrays using pointers

int main(){

 int a[5]={1, 3, 5, 7, 9};

 int b[5]={1, 3, 5, 8, 9};

 bool flag = true;

 for (int i = 0; i < 5; i++)

 if (*(a+i) != *(b+i)){ //if(a[i] != b[0])

 flag = false;

 break;

 }

 if (flag)

 cout<<"arrays are identical";

 else

 cout<<"arrays are not identical";

}

arrays are not identical

254

home

6 - Strings

255

home

Fundamentals of Characters and Strings

• String is a series of characters treated as one unit. String

may include letters, digits, special characters

• A string literal (string constant) is enclosed in double
quotes, for example: "I like C++"

• String always end with the null character '\0‘

256

home

Fundamentals of Characters and Strings

• char s[]={'b','l','u','e'}; or

 char s[] = "blue";

– Creates a 5 element character array (named s)

– last element is the null character '\0'

• char *s = "blue";

– Creates a pointer named (s) that points to the first
element of constant string "blue", somewhere in

memory

– s is a pointer to a constant character

– last element is the null character '\0'

s[0] ‘b'

s[1] ‘l'

s[2] 'u'

s[3] ‘e'

s[4] '\0'

‘b'

‘l'

'u'

‘e'

'\0'

s

257

home

Character array

int main() {

 char str[] = "Ahmad Ali";

 cout<< str << endl;

 for(int i=0; str[i] != '\0'; i++)

 cout << str[i];

}

Ahmad Ali

Ahmad Ali

str[0] 'A'

str[1] 'h'

str[2] 'm'

str[3] 'a'

str[4] 'd'

str[5] ' '

str[6] 'A'

str[7] 'l'

str[8] 'i'

str[9] '\0'

258

home

Pointer to a character

int main() {

 char *str = "Ahmad Ali";

 cout<< str << endl;

 for(int i=0; *str != '\0'; i++)

 cout << *(str++);

}

A

h

m

a

d

A

l

i

\0

str

Ahmad Ali

Ahmad Ali

259

home

Reading strings

• cin >> char_array;

– Assign input to the character array

‒ Reads characters until whitespace is entered

– String could exceed array size

 char word[20];

 cin >> word;

• cin.getline(char_array, size, delimiter_char);

– Reads characters to the specified array until either:

• One less than the size is reached

• The delimiter character is input

 char sentence[80];

 cin.getline(sentence, 80, '\n')

260

home

int main(){

 char a[25], *s = a;

 cout << "Enter a name : ";

 cin>> s; //or cin>> a; read until space or enter

 cout << a << endl;

 cout<< s <<endl;

 for(int i=0 ; a[i]!= '\0' ; i++)

 cout << a[i] << endl;

}

Enter a name : ali

ali

ali

a

l

i

Reading strings using cin>>

Enter a name : sam ahmad

sam

sam

s

a

m
261

home

Read strings using getline()

int main() {

 char a[20], *s = a;

 cout<<"Please enter your name: ";

 cin.getline(s,20,'\n');//or use a instead of s

 cout << s << endl;

 for(int i=0; a[i] != '\0'; i++)

 cout << a[i];

}

A a[0]

h a[1]

m a[2]

a a[3]

d a[4]

a[5]

A a[6]

l a7]

i a[8]

\0 a[9]

Please enter your name: Ahmad Ali

Ahmad Ali

Ahmad Ali
262

home

Array of char and Array of int

int main(){

 char a[10] = "Ahmad";//char a[10]={'A','h','m','a','d'};

 cout << a << endl; // prints Ahmed

 int b[10] = {1,2,3,4,5};

 cout << b << endl;
 //prints the address of the first element in the array

}

263

home

Function to return the length of a string
int length(char []);

int main() {

 char s1[] = "hello world";

 char *s2 = "welcome to C++";

 cout<<"the length of s1 = "<<length(s1);

 cout<<endl;

 cout<<"the length of s2 = "<<length(s2);

}

int length(char name[]) {

 int i;

 for(i=0 ; name[i]!= 0 ; i++);

 // do nothing, just make i= the last element in the array

 return i;

}

the length of s1 = 11

the length of s2 = 14
264

home

Program to print a string in reverse order

int main() {

 int i , j;

 char name[25];

 cout<<"Enter your first name: ";

 cin>>name;

 for(int i=0 ; name[i]!= '\0' ; i++);

 //do nothing, just make i = the last element in the array

 cout<<“First name in reverse: ";

 for(int j = i-1 ; j >= 0 ;j--)

 cout<< name[j];

}

Enter your first name: ahmad

First name in reverse: damha

265

home

Arrays of Pointers
• Arrays can contain pointers

• Commonly used to store an array of strings

char *suit[4]={"Hearts", "Diamonds", "Clubs", "Spades"};

• Each element of suit array is a pointer to a char constant

• Strings are not stored in array, only the pointers are stored in array

• suit array has a fixed size, but strings can be of any size

suit[3]

suit[2]

suit[1]

suit[0]

'H'

'e'

'a'

'r'

't'

's'

 '\0'

'D'

'i'

'a'

'm'

'o'

'n'

'd'

's'

 '\0'

'C'

'l'

'u'

'b'

's'

 '\0'

'S'

'p'

'a'

'd'

'e'

's'

 '\0'

266

home

String Manipulation Functions

• The string-handling library <cstring>, provides many useful

functions for manipulating string data:

– Copying strings

– Comparing strings

– Concatenating strings

– Searching strings for characters and other strings

– Tokenizing strings: (separating strings into logical pieces such as the

separate words in a sentence)

– Determining the length of strings

• ASCII character code

– Strings are compared using their character codes

• Tokenizing

– Breaking strings into tokens, separated by user-specified characters

– Tokens are usually logical units, such as words (separated by spaces)

– "This is my string" has 4 word tokens (separated by spaces)

267

home

Copying Strings

• char *strcpy(char *s1,const char *s2)

– Copies the string s2 into the character array s1. The
value of s1 is returned

• char *strncpy(char *s1, const char *s2, size_t n)

– Copies at most n characters of the string s2 into the
character array s1. The value of s1 is returned

– Size_t is an unsigned integral data type

268

home

Example (strcpy, strncpy)

#include <iostream>

#include <cstring>

using namespace std;

int main() {

 char x[] = "Happy Birthday";

 char y[25];

 char z[] = "Today is sunday";

 cout << strcpy(y,x) << endl;

 cout << strncpy(z,x,10);

}

Happy Birthday

Happy Birtunday

269

home

Comparing Strings

• int strcmp(const char *s1, const char *s2)

– Compares string s1 with string s2, and returns a value of:

• 0: if s1 is equal to s2

• -1: if s1 is less than s2

• 1: if s1 is greater than s2

• int strncmp(const char *s1,const char *s2,size_t n)

– Compares up to n characters of string s1 with string s2, and returns:

• 0: if s1 is equal to s2

• -1: if s1 is less than s2

• 1: if s1 is greater than s2

270

home

int main() {

 char s1[]="Happy Year", s2[]="Happy Year", s3[]="Happy";

 cout << "s1 vs s2 : "<< strcmp(s1,s2)<<endl;

 cout << "s1 vs s3 : "<< strcmp(s1,s3)<<endl;

 cout << "s3 vs s1 : "<< strcmp(s3,s1)<<endl;

 cout << endl;

 cout <<"5 chars of s1 vs s3 : "<<strncmp(s1,s3,5)<<endl;

 cout <<"7 chars of s1 vs s3 : "<<strncmp(s1,s3,7)<<endl;

 cout <<"7 chars of s3 vs s1 : "<< strncmp(s3,s1,7)<<endl;

}

Example (strcmp, strncmp)

s1 vs s2 : 0

s1 vs s3 : 1

s3 vs s1 : -1

5 chars of s1 vs s3 : 0

7 chars of s1 vs s3 : 1

7 chars of s3 vs s1 : -1
271

home

Concatenating Strings

• char *strcat(char *s1, const char *s2)

– Appends string s2 to string s1

– The first character of s2 overwrites the terminating null
character of s1. The value of s1 is returned.

• char *strncat(char *s1,const char *s2, size_t n)

– Appends at most n characters of string s2 to string s1. The
first character of s2 overwrites the terminating null character
of s1. The value of s1 is returned.

272

home

Example (strcat, strncat)

#include <iostream>

#include <cstring>

using namespace std;

int main() {

 char s1[20]="Happy New", s2[]="Year", s3[40] = "";

 cout << strcat(s1,s2) <<endl;

 cout << strncat(s3, s1, 5)<<endl;

 cout << strcat(s3, s1)<<endl;

}

Happy NewYear

Happy

HappyHappy NewYear

273

home

Tokenizing Strings

• char *strtok(char *s1, const char *s2)

– String s1 is broken up based on the characters contained in string s2

– char s1[] = "this:is:a:string",s1 has 4 tokens based on

character ':' which are: "this" , "is" , "a" , "string".

– strtok returns only one token at a time

• strtok(s1,":") returns "this"

– A sequence of calls to strtok must be made to breaks string s1 into

tokens

– A pointer to the current token is returned by each call.

274

home

Tokenizing Strings

• The first call must contains s1 as the first argument, and

subsequent calls to continue tokenizing the same string must

contain NULL as the first argument

• When called, strtok checks whether the first argument is:

– NULL: return the next token in the previous string that was passed to

strtok

– not NULL: return the first token in the current string passed to strtok

• If there are no more tokens when the function is called, NULL is

returned

275

home

int main() {

 char s[]="This is a String",*p;

 int i = 0;

 p = strtok(s," "); //p points to the first token in s

 while(p != NULL){

 cout<<"Token # "<<++i<<" : "<<p<<endl; //print current token

 p = strtok(NULL ," "); //p points to next token in s

 }

 cout<<"string s has "<<i<<" tokens.";

}

Example (strtok)

Token # 1 : This

Token # 2 : is

Token # 3 : a

Token # 4 : String

string s has 4 tokens.
276

home

int main() {

 char s[]="Wafaa.Salem.Ahmad.Jameel", *p[50];

 int i = 0;

 p[0] = strtok(s,".");//p[0] points to the first token in s

 while(p[i++] != NULL)

 p[i] = strtok(NULL ,".");//p[i] points to next token in s

 for(i = 0 ; p[i] != NULL ; i++)//print tokens

 cout<<p[i]<<endl;

}

Example 2 (strtok)

Wafaa

Salem

Ahmad

Jameel
277

home

Function that return how many times a word

is found in a sentence

int search(char *sentence, char *word){

 char *p;

 int c = 0;

 p = strtok(sentence," ");

 while(p != NULL){

 if(strcmp(p, word) == 0)

 c++;

 p = strtok(NULL ," ");

 }

 return c;

}

278

home

String Size

• size_t strlen(const char *s)

– Determines the length of string s. The number of characters

preceding the terminating null character is returned

• size_t: this type is defined in the header file <cstring> to

be an unsigned integral type such as unsigned int or

unsigned long.

279

home

int main() {

 char s1[]="Happy Year", s2[]="Happy";

 cout <<"s1 length : "<< strlen(s1)<<endl;

 cout <<"s2 length : "<< strlen(s2)<<endl;

}

Example (strlen)

s1 length : 10

s2 length : 5

280

