Common Respiratory Problems: Pulmonary Embolism, Pneumothorax

Presented by Omar AL-Rawajfah, RN, PhD
Lecture Outlines

• Pulmonary Embolism
 – Etiology & pathophysiology
 – Deep vein thrombosis
 – Hemodynamic effect
 – Assessment
 – Nursing diagnoses
 – Collaborative management

• Pneumothorax
 – Etiology & pathophysiology
 – Deep vein thrombosis
 – Hemodynamic effect
 – Assessment
 – Nursing diagnoses
 – Collaborative management
Etiology & Pathophysiology

• Pulmonary Embolism (PE) occurs when the pulmonary vasculature is completely or partially occluded by nonsoluble material.
• Most of PE caused by a dislodged venous thrombus
 – most pulmonary emboli (80% to 90%) arise from venous thrombi that extend into the proximal veins (popliteal and iliofemoral) of the lower extremities
• 65% occurs in both lungs, 25% in the Rt lung & 10% in Lt lung
• Women are affected more than men
• Origins of PE varies
 – DVT
 – Fat embolism
 – Air embolism
 – Amniotic embolism
 – Septic embolism
 – Tumor embolism
 – Rt heart embolism
 – Foreign materials
Etiology & Pathophysiology

- Deep Vein Thrombosis
- Virchow’s triad:
 - Vein wall alteration
 - IV catheter
 - Infection & inflammation
 - Varicose veins
 - Major body burs
 - Blood alteration
 - Hyperviscosity
 - Surgery
 - Oral contraceptives
 - Anticoagulant deficiency, protein S&C
 - Blood flow alteration
 - Prolonged bed rest & prolonged surgery
 - Obesity
 - Sickle cell anemia
 - Invasive devices
Etiology & Pathophysiology

• Relationship of deep vein thrombosis and PE

• DVT can be dislodged by various ways:
 – Sudden jarring or movement, especially with 1st ambulation after several days of inactivity
 – Coughing, sneezing, unstable hemodynamic BP
 – Deep leg muscle massage

• The embolus travels through the venous system into the inferior vena cava, Rt atrium, Rt ventricles, then into the pulmonary artery
Etiology & Pathophysiology

- Blood flow to distal lung tissue is impaired
- No gas exchange with occur in these tissue → CO2 from systemic circulation can not enter the alveoli → smooth muscle contraction, bronchospasm, atelectasis
- These changes will affect the nonperfused alveoli and the surrounding tissues
- V/Q mismatch, local tissue hypoxia, systematic hypoxemia, & hypercapnea
- Within 2 – 3 hrs, ↓ production of surfactant → alveolar collapse
- Vasoactive substances such as thromboxanes, histamine, prostaglandin, & serotonin are released
Etiology & Pathophysiology

- Hemodynamic changes is determined by the size the location of the emboli
- Pulmonary hypertension and increased workload of the Rt ventricle → Rt ventricular failure → backward & forward effects

 - **Backward effects:**
 - Rt ventricle hypertrophy
 - Neck vein distention
 - Peripheral edema & ascites

 - **Forward effects:**
 - Lt ventricle does not receive enough blood
 - Reduced CO
 - Bulging of the interventricular septum → ↓Lt ventricle size
 - ↓ in perfusion of coronary artery, brain, renal, systems
Etiology & Pathophysiology

- PE can occur in terminal small pulmonary vessels and results in pulmonary infraction.
- Pulmonary infraction may result from variance in blood flow that leads to break of large emboli to smaller one that occlude the distal end branches.
- These area develop necrosis abscess and scarring & fibrosis.
- Massive PE can result sudden death.
- Two-thirds of patients with fatal PE die within 1 hr of the onset of the symptoms.
Assessment

- History
- Physical presentation (see Box 26-6.)
- Diagnostic findings for DVT (Figure 26-4.)
 - Impedance plethysmography
 - Noninvasive method of measuring changes in volume in the extremities
 - Normally volume and pressure in leg veins increased with inspiration & decreased with expiration
 - Venous duplex doppler studies
 - Evaluate the patency of veins using ultrasound waves
 - Speed and direction of flow can be determined
 - It is considered very accurate (90-100%)
 - Venography
 - Use of radiopaque dye into the dorsum of the foot
 - Magnetic resonance imaging and computed tomography
Plethysmography
Venography

Catheter is inserted into the vein and contrast material is injected.
Diagnostic findings for pulmonary embolus

- Ventilation-perfusion lung scan
 - The initial and specific diagnostic examination for PE
 - Injection of radioisotopes of technetium-99m or iodine-131
 - Ventilation scan is one with inhalation of radioactive aerosol (e.g. xenon)

- Pulmonary angiography
 - Rt heart catheterization
 - Recommended for patients whose clinical assessment and perfusion scan are discordant

- Chest X-ray
 - May be normal with the first 24hrs
 - Non specific findings such as, enlarged Rt heart shadow, atelectasis, enlarged descending pulmonary artery

- Blood test
 - ABG: decrease CO2, PaO2 and elevated pH
 - A-a O2 gradient = 147 – [1.2 x PCO2) + PaO2]; normally should not be higher than 1/10 of patient’s age plus 10

- ECG
 - ST depression in V1& V2,
 - PR segment elevation or depression & T inversion V1-V4
Nursing diagnoses

• Pain
• Impaired gas exchange
• Ineffective breathing pattern
• Decreased cardiac output
• Alter tissue perfusion (see table 19-5)
Collaborative Management

• Maintaining optimal oxygenation (see Table 26-5)
 – May require 100% nonrebreathing mask
 – Inhaled & intravenous bronchodilators are given
 – **AVOIDE** chest physiotherapy and ambulation
 – Analgesic (Morphine sulfate)
 – Maintain high or semi-fowler position
 – Maintain Lt position with head lower than the body in case of air embolism
 – In case of hemodynamic instability intubation may be needed with PEEP
 – Close monitoring of vital signs is required
Collaborative Management

• Restoring perfusion
 – Prevention
 • Good hydration
 • Anticoagulation therapy
 • Thromboembolic compression stockings
 • Leg elevation with passive leg exercises
 • Early ambulation
 – Anticoagulant therapy
 • Heparin is the drug of choice
 • Heparin should be started as soon as possible
 • Warfarin should be started within 24hr of the diagnosis & continue for 6 weeks to 3 months
 • PT is maintained within 1.5 to 2.5 times the control
Collaborative Management

• Restoring perfusion
 – Thrombolytic therapy
 • Contraindications are the same of those for thrombolytic therapy in AMI
 • They are effective through a 2-week window
 – Embolectomy
 • Maybe indicated for those have not respond to anticoagulants and thrombolytic therapies
 • More successful if performed within 24 hrs

• Maintaining hemodynamic stability
 – Fluid management
 • Volume expansion (e.g. dextran 40 or 70) to ensure Lt ventricular filling
 • In case of Rt side HF, diuresis may be indicated
 • Close monitoring of the pulmonary pressure
Collaborative Management

– Vasoactive support
 • Hydralazine, nifedipine, captopril, & amionophylline are used to decrease pulmonary resistance
 • Dobutamine infusion is used to increase the contractility
 • Norepinephrine may be used in patients with profound decrease BP

– Observing complication
 • Cardiovascular
 • Pulmonary
 • Neurologic
 • GI
 • Metabolic or renal
Pneumothorax

- Usually occurred outside the clinical setting as result of accidental trauma, motor vehicle accidents, falls, gunshots, or stabbings
- It is a condition in which air leaks into the pleural space and the lung collapse
- Visceral pleura and parietal pleura are separated by a potential space contain small amount of pleural fluid
- The plural space has a negative subatmospheric pressure
- When continuity of these pleurae is broken, atmospheric air rushes into the negative pressure
- This result in lung collapse & decreased lung compliance, VC, TLC
- Hypoxia may result from V/Q mismatch
Spontaneous Pneumothorax

• Primary spontaneous pneumothorax:
 – Idiopathic
 – More common in males
 – Peak age occurrence 20 – 40
 – May be due to rupture of a previously undetected bulla

• Secondary spontaneous pneumothorax
 – More common in males
 – Due to underlying pulmonary disease
 – Peak age group 45 – 65
 – May associated with COPD as result of slow destruction of the alveolar walls and poor pulmonary recoil
 – In malignant pulmonary disease, rapid neoplastic growth can cause pleural perforation or it can cause bronchial, alveolar distention
 – Common in AIDS patient because of Pneumocystis carinii pneumonia
 – Common in cystic fibrosis and tuberculosis
Traumatic Pneumothorax

- Open sucking chest wound
- Blunt injury
- May be associated with medical procedures such as transbronchial biopsy, central line placement, thoracentesis, pleural biopsy, chest tube placement
- With traumatic pneumothorax, blood vessels can be injured resulting in hemothorax
- Chylothorax occurs when lymph fluid collects in the pleural space
Tension Pneumothorax

- Air is trapped in the intrapleural space and cause pressures to be higher than those of lung
- Caused by the “one-way” valve effect
- During inspiration enters into intrapleural space and can’t escape during expiration
- Increased pressure causes compression on the lung tissue, trachea, major vessels, & heart
- Blood flow and CO is significantly altered and the pressure must be released quickly
Assessment

- **History**
 - Underlying Pulmonary diseases
 - Medical procedure (see table 19-7)

- **Physical presentation**
 - Sudden pain
 - Shortness of breath
 - Asymmetric chest movement
 - Absent or decreased breathing
 - Emphysema in the surrounding tissues
 - Distended neck veins

- **Diagnostic findings**
 - Chest x-ray
 - CT scan
 - ABG
Nursing Diagnoses

• Pain
• Ineffective breathing pattern
• Impaired gas exchange
• Risk for infection (see table 19-8)
Collaborative Management

- **Oxygenation**
 - O2 by nasal cannula 5 L per min
 - Maintain O2 saturation at least 90%
 - Semi-fowler or Fowler position

- **Pulmonary Reexpansion**
 - Spontaneous pneumothorax of 15 – 25% is usually left untreated
 - Simple aspiration of air with Taflon catheter is considered in emergency
 - Chest tube placement is done when the pneumothorax is large

- **Pleurodesis**
 - Pleurodesis: bedside procedure that create pleural adhesion by the introduction of irritating agents into the plural space through chest tube
 - If the chest tube was not enough to reexpand the lung surgical procedure should be considered
 - Pleurectomy or pleural abrasion is required
 - Thoracotomy or thoracoscopy is performed to maintain plural adhesion
Collaborative Management

• Intrapleural Fibrinolysis
 – In case of loculated hemothorax
 – Very useful for patients with underlying pulmonary disease who may poorly tolerate general anesthesia
 – Instilling Urokinase or streptokinase into the chest tube, clamping the tube for 4 hrs, rotate the patient in different position
 – 92% success rate

• Video-Assisted Thoracic Surgery (Thoracoscopy)
 – Direct visualization of the defects
 – Samples and biopsy can be obtained
 – Removal of blood clots
 – Thoracic duct ligation
 – Lung repair

• Observing for complication
 – Infection & lung abscess
 – atelectasis
 – Respiratory failure
 – ARDS
Questions and answers