
Information Retrieval Systems Saif Rababah 1

Modern Information Retrieval

Chapter 7: Text Processing

Fall 2011

Information Retrieval Systems Saif Rababah 2

Overview

1. Document pre-processing
1. Lexical analysis
2. Stopword elimination
3. Stemming
4. Index-term selection
5. Thesauri

2. Text Compression
1. Statistical methods
2. Huffman coding
3. Dictionary methods
4. Ziv-Lempel compression

Information Retrieval Systems Saif Rababah 3

Document Preprocessing
 Document pre-processing is the process of incorporating a new

document into an information retrieval system.
 The goal is to

 Represent the document efficiently in terms of both space (for
storing the document) and time (for processing retrieval
requests) requirements.

 Maintain good retrieval performance (precision and recall).
 Document pre-processing is a complex process that leads to the

representation of each document by a select set of index terms.
 However, some Web search engines are giving up on much of this

process and index all (or virtually all) the words in a document).

Information Retrieval Systems Saif Rababah 4

Document Preprocessing (cont.)

 Document pre-processing includes 5
stages:
1. Lexical analysis
2. Stopword elimination
3. Stemming
4. Index-term selection
5. Construction of thesauri

Information Retrieval Systems Saif Rababah 5

Lexical analysis
 Objective: Determine the words of the document.
 Lexical analysis separates the input alphabet into

 Word characters (e.g., the letters a-z)
 Word separators (e.g., space, newline, tab)

 The following decisions may have impact on retrieval
 Digits: Used to be ignored, but the trend now is to identify

numbers (e.g., telephone numbers) and mixed strings as words.
 Punctuation marks: Usually treated as word separators.
 Hyphens: Should we interpret “pre-processing” as “pre

processing” or as “preprocessing”?
 Letter case: Often ignored, but then a search for “First Bank” (a

specific bank) would retrieve a document with the phrase “Bank
of America was the first bank to offer its customers…”

Information Retrieval Systems Saif Rababah 6

Stopword elimination
 Objective: Filter out words that occur in most of the documents.
 Such words have no value for retrieval purposes
 These words are referred to as stopwords. They include

 Articles (a, an, the, …)
 Prepositions (in, on, of, …)
 Conjunctions (and, or, but, if, …)
 Pronouns (I, you, them, it…)
 Possibly some verbs, nouns, adverbs, adjectives (make, thing,

similar, …)
 A typical stopword list may include several hundred words.
 As seen earlier, the 100 most frequent words add-up to about 50% of

the words in a document.
 Hence, stopword elimination improves the size of the indexing

structures.

Information Retrieval Systems Saif Rababah 7

Stemming
 Objective: Replace all the variants of a word with the

single stem of the word.
 Variants include plurals, gerund forms (ing-form), third

person suffixes, past tense suffixes, etc.
 Example: connect: connects, connected, connecting,

connection,…
 All have similar semantics and relate to a single

concept.
 In parallel, stemming must be performed on the user

query.

Information Retrieval Systems Saif Rababah 8

Stemming (cont.)
 Stemming improves

 Storage and search efficiency: less terms are stored.
 Recall:

 without stemming a query about “connection”, matches only
documents that have “connection”.

 With stemming, the query is about “connect” and matches in
addition documents that originally had “connects”,
“connected”, “connecting”, etc.

 However, stemming may hurt precision, because users can no longer
target just a particular form.

 Stemming may be performed using
 Algorithms that stripe of suffixes according to substitution rules.
 Large dictionaries, that provide the stem of each word.

Information Retrieval Systems Saif Rababah 9

Index term selection (indexing)
 Objective: Increase efficiency by extracting from the resulting

document a selected set of terms to be used for indexing the
document.
 If full text representation is adopted then all words are used for

indexing.
 Indexing is a critical process: User's ability to find documents on a

particular subject is limited by the indexing process having created
index terms for this subject.

 Index can be done manually or automatically.
 Historically, manual indexing was performed by professional indexers

associated with library organizations.
 However, automatic indexing is more common now (or, with full text

representations, indexing is altogether avoided).

Information Retrieval Systems Saif Rababah 10

Indexing (cont.)
 Relative advantages of manual indexing:

 Ability to perform abstractions (conclude what the subject is) and
determine additional related terms,

 Ability to judge the value of concepts.
 Relative advantages of automatic indexing:

 Reduced cost: Once initial hardware cost is amortized, operational
cost is cheaper than wages for human indexers.

 Reduced processing time
 Improved consistency.

 Controlled vocabulary: Index terms must be selected from a
predefined set of terms (the domain of the index).
 Use of a controlled vocabulary helps standardize the choice of

terms.
 Searching is improved, because users know the vocabulary being

used.
 Thesauri can compensate for lack of controlled vocabularies.

Information Retrieval Systems Saif Rababah 11

Indexing (cont.)
 Index exhaustivity: the extent to which concepts are indexed.

 Should we index only the most important concepts, or also more
minor concepts?

 Index specificity: the preciseness of the index term used.
 Should we use general indexing terms or more specific terms?
 Should we use the term "computer", "personal computer", or

“Gateway E-3400”?
 Main effect:

 High exhaustivity improves recall (decreases precision).
 High specificity improves precision (decreases recall).

 Related issues:
 Index title and abstract only, or the entire document?
 Should index terms be weighted?

Information Retrieval Systems Saif Rababah 12

Indexing (cont.)
Reducing the size of the index:
 Recall that articles, prepositions, conjunctions, pronouns

have already been removed through a stopword list.
 Recall that the 100 most frequent words account for

50% of all word occurrences.
 Words that are very infrequent (occur only a few times in

a collection) are often removed, under the assumption
that they would probably not be in the user’s vocabulary.

 Reduction not based on probabilistic arguments: Nouns
are often preferred over verbs, adjectives, or adverbs.

Information Retrieval Systems Saif Rababah 13

Indexing (cont.)
Indexing may also assign weights to terms.
 Non-weighted indexing:

 No attempt to determine the value of the different terms assigned to
a document.

 Not possible to distinguish between major topics and casual
references.

 All retrieved documents are equal in value.
 Typical of commercial systems through the 1980s.

 Weighted indexing:
 Attempt made to place a value on each term as a description of the

document.
 This value is related to the frequency of occurrence of the term in

the document (higher is better), but also to the number of collection
documents that use this term (lower is better).

 Query weights and document weights are combined to a value
describing the likelihood that a document matches a query

Information Retrieval Systems Saif Rababah 14

Thesauri
Objective: Standardize the index terms that were selected.
 In its simplest form a thesaurus is

 A list of “important” words (concepts).
 For each word, an associated list of synonyms.

 A thesaurus may be generic (cover all of English) or concentrate on a
particular domain of knowledge.

 The role of a thesaurus in information retrieval
 Provide a standard vocabulary for indexing.
 Help users locate proper query terms.
 Provide hierarchies for automatic broadening or narrowing of

queries.
 Here, our interest is in providing a standard vocabulary (a controlled

vocabulary).
 Essentially, in this final stage, each indexing term is replaced by the

concept that defines its thesaurus class.

Information Retrieval Systems Saif Rababah 15

Text Compression
 Data Encoding: Transform encoding units (characters, words, etc.) into

code values.
 Objective is either

 Reduce size (compression)
 Hide contents (encryption).

 Lossless encoding: The transformation is reversible– original file can
be recovered from encoded (compressed, encrypted) file.

 Compression ratio:
 S: size of the uncompressed file.
 C: size of the compressed file.
 Compression-rate = C/S.
 Example:

 S= 300,000 bytes, C=100,000 bytes.
 Compression rate: 100,000/300,000 = 0.33.

Information Retrieval Systems Saif Rababah 16

Text Compression (cont.)
 Advantages of compression:

 Reduction in storage size.
 Reduction in transmission time.
 Reduction in processing times (e.g., searching).

 Disadvantages:
 Requires time for compression/decompression.
 Processing of compressed text is more complex.

 Specific for information retrieval:
 Decompression time is often more critical than compression

time.
 Unlike transmission-motivated compression (modems), documents

in an information retrieval system are encoded once and decoded
many times.

 Prefer compression techniques that allow searching in the
compressed file (without decompressing it).

Information Retrieval Systems Saif Rababah 17

Text compression (cont.)
Basic methods:
 Statistical methods:

 Estimate the probability of occurrence of each encoding unit
(character or word) in the alphabet.

 Assign codes to units: more frequent units are assigned shorter
codes.

 In information retrieval, word-encoding is preferred over
character encoding.

 Dictionary methods:
 Substitute a phrase (string of units) by a pointer to a dictionary or

a previous occurrence of the phrase.
 Compression is achieved because the pointer is shorter than the

phrase.

Information Retrieval Systems Saif Rababah 18

Statistical methods
 Recall from the discussion of information theory:

 Assume a message from an alphabet of n symbols.
 Assume that the probability of the i’th symbol is pi.
 The average information content (entropy) is:

 Optimal encoding is achieved when a symbol with probability pi
is assigned a code whose length is log2(1/pi) = –log2(pi) .

 Hence, E also represents optimal average code length
(measured in bits per character).

 Therefore, E is the lower bound on compression.

 

n

i pipiE 1)(2log.

Information Retrieval Systems Saif Rababah 19

Statistical methods (cont.)
 Statistical methods must first estimate the frequencies of the encoding units,

and then assign codes based on these frequencies.
 Approaches:

 Static: Use a single distribution for all texts.
 Fast, but not optimal because different texts exhibit different

distributions.
 The encoding table is stored in the application (not in the text).
 Decompression can start at any point in the file.

 Dynamic: Determine the frequencies in a preliminary pass.
 Excellent compression, but a total of two passes is required.
 The encoding table is stored at the beginning of the text.
 Decompression can start at any point in the file.

 Adaptive: Progressively learn the distribution of the text while
compressing; each character is encoded on the basis of the preceding
characters in a text.
 Fast, and close to optimal compression.
 Decompression must start from the beginning

Information Retrieval Systems Saif Rababah 20

Huffman coding
 General:

 Huffman coding is one of the best known compression techniques
(1952).

 It is used in the Unix programs pack/unpack.
 It is a statistical method based on variable length codes.
 Compression is achieved by assigning shorter codes to more

frequent units.
 Decompression is unique because no code is the prefix of another.
 Encoding units may be either bytes or words.
 Does not exploit the dependencies between the encoding units.
 Yields optimum average code length when these units are

independent.
 Can be used with the static, dynamic and adaptive approaches.

Information Retrieval Systems Saif Rababah 21

Huffman coding (cont.)
 Method:

 1. Build a table of the encoding units and their frequencies
(probabilities).

 2. Combine the two least frequent units into a unit with the sum
of the probabilities and encode it in a new “unit”.



 3. Repeat this process until the entire dictionary is represented
by a root whose probability is 1.0.

 4. When there is a tie for the two least frequent units, any tie-
breaking procedure is acceptable.

Unit1: p1 Unit2: p2

New unit: p1+p2

Information Retrieval Systems Saif Rababah 22

Huffman coding (cont.)
Example:

Information Retrieval Systems Saif Rababah 23

Huffman coding (cont.)
 Example (cont.):

 The resulting code:
 Average code length:

 The entropy (compression
lower bound) is:

 Fixed code length would have
required log2 10 = 3.32 bits
(which, in practice, would
require 4 bits).

 Compression ratio:
C/S = 3.05/3.32 = 0.92

 


10

1
05.3.

i
bitslipi

Information Retrieval Systems Saif Rababah 24

Huffman coding (cont.)
 Example: When the letters A-Z are thus encoded:

 Code lengths are between 3 and 10 bits.
 Average code length is 4.12 bits.
 A fixed code would have required log2 26 = 4.70 bits (i.e., 5 bits).

 More compression is obtained by encoding words:
 With the 800 most frequent English words (small table!) are

encoded in this method (all other words are in plain ASCII), 40-
50% compression has been reported.

 Huffman codes are prefix-specific:
 No code is the beginning of another code.
 Hence, a left-to-right decoding operation is unique.
 It is possible to search the compressed text.

Information Retrieval Systems Saif Rababah 25

Dictionary methods
 Dictionary methods construct a dictionary of phrases, and replace their

occurrences with dictionary pointers.
 The choice of phrases may be static, dynamic or adaptive.
 A simple method (digrams):

 Construct a dictionary of pairs of letters that occur together frequently
(e.g., ou, ea, ch, …).

 If n such pairs are used, a pointer (location in the dictionary) requires
log2 n bits.

 At each step in the encoding, the next pair is examined.
 If it corresponds to a dictionary pair, it is replaced by its encoding,

and the encoding position moves by 2 characters.
 Otherwise, the single character encoding is kept, and the position

moves by one character.
 To assure that decoding is unambiguous, an extra bit is needed to

indicate whether the next unit is a single character code or a digram
code.

Information Retrieval Systems Saif Rababah 26

Ziv-Lempel compression
 General:

 The Ziv-Lempel method (1977) uses a single-pass adaptive
scheme.

 While compressing, it constructs a dictionary from phrases
encountered so far.

 Many popular programs (Unix compress/uncompress, GNU
gzip/gunzip, and Windows WinZip) are based on the Ziv-Lempel
algorithm.

 Compression is slightly better than Huffman codes (C/S of 45%
vs. 55%).

 Disadvantage for information retrieval: decompressed file cannot
be searched and decoding cannot start at a random place in the
file.

Information Retrieval Systems Saif Rababah 27

Ziv-Lempel compression (cont.)
 Compression:
 1. Initialize the dictionary to contain all “phrases” of

length one.
 2. Examine the input stream and search for the longest

phrase which has appeared in the dictionary.
 3. Encode this phrase by its index in the dictionary.
 4. Add the phrase followed by the next symbol in the

input stream to the dictionary.
 5. Go to Step 2.

Information Retrieval Systems Saif Rababah 28

Ziv-Lempel compression (cont.)
Example:
 Assume a dictionary of 16 phrases (4 bit

index).

 This case does not result in
compression.
 Source: 25 characters in a 2-

character alphabet require a total of
25 bits.
 Output: 13 pointers of 4 bits

require a total of 52 bits.
 This is because the length of the input

data in this example is too short.
 In practice, the Lempel-Ziv algorithm

works well only when the input data is
sufficiently large and there is sufficient
redundancy in the data.

