جامعة آل البيت
<u>Al al- Bayt University</u>
مركز الجودة و التطوير
Quality and Development Center

مركز الجودة و التطوير Quality and Development Center		
Cent-QD-F [*] 4	رقم النموذج	

Course Description/ Prince Al Hussein bin Abdullah II Faculty of Information Technology

Department of: Information Systems

1. Instructor/ Coordinator

Name:	Dr.Wafa Alsharafat
Office Hours:	9:30 - 10:30 Sunday, Tuesday
Office No. and Phone:	026297000 ext (3383)
Email:	wafa@aabu.edu.jo
Teaching Assistant (if any):	

2. Course Information

Level: 2	Course Title: Fundamentals of Intelligent Systems	Course No.: 902371
Class Time: 10:30 -11:30	Prerequisite / Co-requisite: 901210 : Object Oriented Programming	Course Type: Theoretical
Study Hours: 3	Semester: First	Academic Year : 2022/2023
Type of teaching: Face to face Blended (:2:1:1:1:1:2) Online		

3. Textbook(s)

Title	Artificial Intelligence: A Modern Approach
Author	Stuart Russell and Peter Norvig
Publisher	Prentice-Hall
Year	2020
Edition	4 rd edition
Textbook Website	

4. References (books and research published in periodicals or websites)

1-

Artificial Intelligence: A Modern Approach, 3rd Edition.

5. Course Description

Artificial Intelligent (AI) focus on developing machine that can think. AI can be defined as a branch of computer science that is concerned in the automation of intelligent behavior. In this course, we will study the most fundamental knowledge for understanding AI. We will introduce some basic search algorithms for problem solving; knowledge representation and reasoning; Genetic Programming; and neural networks as well as machine learning.

The main research topics in AI include: problem solving, reasoning, planning, natural language understanding, computer vision, automatic programming, and machine learning, and so on. Of course, these topics are closely related with each other. For example, the knowledge acquired through learning can be used both for problem solving and for reasoning. In fact, the skill for problem solving itself should be acquired through learning. Also, methods for problem solving are

V1

useful both for reasoning and planning. Further, both natural language understanding and computer vision can be solved using methods developed in the field of pattern recognition.

6. Course Outcomes (CO's) Upon successful completion of the course, student will be able to: (Use Bloom's Taxonomy Verbs)

CO#		SO
1.	Understanding the foundations of Artificial Intelligence	1
2.	Representing a problem as a search solving problem.	1
3.	Searching a space of answers for a solution to a problem in practical time.	4
4.	Representing intelligent behavior in terms of agent.	1
5.	Automated creation of complex plans in complex and unknown environments.	4

7. Course Contents

Week #	Торіс	Chapter
1+2	Introduction and History of AI What is AI A brief history 	1
2 6	Ine state of the art	
3 - 6	 Intelligent Agents Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types Agent types 	2
7-10	Solving Problem by Searching	
	 Problem-solving agents Problem types Problem formulation Example problems Basic search algorithms 	3
	Informed search algorithms	
	 Best-first search A*_search Heuristics Search 	
	Midterm	6
14-15	Beyond Classical Search s • Hill-climbing • Simulated annealing • Genetic algorithms (briefly) • Local search in continuous spaces (very briefly)	
	Adversial Search • Games	
	 Perfect play minimax decisions α-β pruning Resource limits and approximate evaluation Games of chance 	
	Games of imperfect information	
	Knowledge Representation and Reasoning Knowledge-based agents	

Final Exam	
 Logic in general models and entailment Propositional (Boolean) logic Equivalence, validity, satisfiability Inference rules and theorem proving forward chaining backward chaining resolution 	

8. Teaching and learning Strategies and Evaluation Methods Evaluation /Measurement Method Learning **Learning Activities Teaching Strategies** (Exam/ Outcomes presentations/ discussion/ assignments In class Questions, 1. Shared and • Active learning Communicate Presentation, Quizzes, Reciprocal • Differentiated instruction effectively in a variety Exam questioning • Personalized learning of professional contexts. **T**argeted • Convergent and divergent thinking Exercises Group discussion • Problem-based learning • assessments • Media literacy Summative assessment In class Questions, Recognize professional 2. Case studies • Inquiry-based learning • Presentation, Quizzes, Reflection and • Problem-based learning responsibilities and Exam Goal-Setting • Media literacy make informed Exercises • Summative assessment judgments in computing Group discussion • practice based on legal Media content . and ethical principles. assessments

In class Questions, Presentation, Participate in class Discussion, Doing quizzes.	 Case studies Group discussion Online media content Team Project assessments 	 Project-based learning Peer teaching Problem-based learning Media literacy 	Support the delivery, use, and management of information systems within an information systems environment.

9. Assessment

Distribution of grades	Assessment Time	Methods Used
30	Up to 11/12/2022	Midterm
20	During semester	Couse Work (Quizzes, Assignments, Active Participation)
50	Up to 29/1/2023	Final Exam

٣

3.

10. Program Educational Objectives (PEOs) (To be added by the academic department)

1.	Analyze complex computing problems, apply information systems principles,
	defutive adequate solutions, and make informed decisions.
2.	Communicate and function effectively in a variety of professional organizational
	contexts.
3.	Join a successful profession in the fields of computing
4.	Follow-up life-long learning in the course of higher education, research, and
	professional development
5.	Contribute significantly to the community as a part of a team or individually with
	accountable, legal, ethical, and responsible practices.

11. Student Learning Outcomes for the Program. (SO's)

SO's (1-6)	Science Student Learning Outcomes for the Program
1	Analyze complex computing problem and to apply principles of computing and other relevant disciplines to identify solutions.
2	Design, implement, and evaluate a computing-based solution to meet a given set of computing requirements in the context of the programs discipline.
3	Communicate effectively in a variety of professional contexts.
4	Recognize professional responsibilities and make informed judgments in computing practice based on legal and ethical principles.
5	Function effectively as a member or leader of a team engaged in activities appropriate to the programs discipline.

12. Mapping between Student Outcomes and Program Educational Objectives

	SO1	SO2	SO3	SO4	SO5
PEO1	X	X			
PEO2			X		X
PEO3					X
PEO4	X	X			
PEO5		X			X

٤

V1