جامعة آل البيت دائرة ضمان الجودة والتخطيط

College of Science Department of Mathematics Course syllabus: Applied Algebra First semester 2020/2021

1. Instructor Information:

Instructor Name	Prof. Ali Handam	
Office Hours	Sunday ,Tuesday, Thursday	
Office Number and Telephone Extension		
Email	alifirstsem@gmail.com	

2. Course Description:

Vector spaces; subspaces; quotient spaces; linear independence and bases; dual spaces; inner product spaces; orthonormal bases; linear transformations; eigenvalues, eigenvectors and determinants of linear transformations; matrix representation; change of basis and similarity; invariant subspaces; canonical forms of linear transformations; diagonal form; triangular form; nilpotent transformations; Jordan form; companion matrices; commutators; the trace functional and Jacobson's lemma; normal transformations and the spectral theorem.

3. Course Information:

Course number: 401447	Course Title: Applied Algebra	Level : Fourth year
Course Nature: Applied	Prereguisite ()4()1/241	Lecture time: Sun. Tue. Thu. 11:00 – 12:00
Academic year: 2020 – 2021	Semester: First	Credit Hours: 3

Course Objectives: 4.

- Engage students in sound mathematical thinking and reasoning. This should include students 1finding patterns, generalizing, and asking/answering relevant questions.
- 2-Provide a setting that prepares students to read and learn mathematics on their own.
- Explore multiple representations of topics including graphical, symbolic, numerical, oral, and 3written. Encourage students to make connections among the various representations to gain a richer, more flexible understanding of each concept.
- 4-Analyze the structure of real-world problems and plan solution strategies. Solve the problems using appropriate tools.
- 5-Develop a mathematical vocabulary by expressing mathematical ideas orally and in writing. 6- Enhance and reinforce the student's understanding of concepts through the use of technology when appropriate.

5. Intended Student Learning Outcomes:

Successful completion of the course should lead to the following outcomes:

- A. Knowledge and Understanding Skills: Student is expected to
- A1. Explore multiple representations of topics including graphical, symbolic, numerical, oral, and written.
- A2. Make connections among the various representations to gain a richer, more flexible understanding of each concept. B. Intellectual Analytical and Cognitive Skills: Student is expected to
- B1. Make mathematical thinking and reasoning, find patterns, generalize, and ask/answer relevant questions.
- B2. Read and learn mathematics on his own.

B3. Analyze the structure of real-world problems and plan solution strategies. Solve the problems using appropriate tools.

- Subject- Specific Skills: Student is expected to C.
- C1. Write and read proofs in applied algebra.
- C2. Constructing Curves and Surfaces Through Specified Points
- C3. Find age-specific population growth.
- C4. Find quadratic forms.
- D. Creativity /Transferable Key Skills/Evaluation: Student is expected to
- D1. Develop a mathematical vocabulary by expressing mathematical ideas orally and in writing.
- D2. Enhance and reinforce the student's understanding of concepts through the use of technology when appropriate.

6. Course Content:

۲

Course Content		
Week	Topics	
1+2	Inverses, rules of matrix arithmetic, determinants, Eigenvalues and Eigenvectors, linear transformations.	
3+4	Geometry of linear operators	
5	Least squares fitting to data	
6+7	Quadratic forms	
8	LU- decompositions	
9+10	Constructing Curves and Surfaces Through Specified Points	
11+12	Geometric linear programming	
13	Markov chain	
14	Cryptography	
15	Age-specific population growth	

7. Teaching and learning Strategies and Evaluation Methods:

Learning Outcomes	Teaching	learning	Evaluation
Learning Outcomes	Strategies	Strategies	Methods
 A1. Explore multiple representations of topics including graphical, symbolic, numerical, oral, and written. A2. Make connections among the various representations to gain a richer, more flexible understanding of each concept. 	 Writing on the blackboard Ask students questions and discuss them Solve various issues 	Give homework assignments	- Classroom presentations - Discussion - First exam
 B1. Make mathematical thinking and reasoning, find patterns, generalize, and ask/answer relevant questions. B2. Read and learn mathematics on his own. B3. Analyze the structure of real-world problems and plan solution strategies. Solve the problems using appropriate tools. 	- Writing on the blackboard - Ask students questions and discuss them - Solve various issues	Give homework assignments	- Classroom presentations - Discussion - Second exam
C1. Write and read proofs in applied algebra. C2. Constructing Curves and Surfaces Through Specified Points C3. Find age-specific population growth. C4. Find quadratic forms.	 Writing on the blackboard Ask students questions and discuss them Solve various issues 	Give homework assignments	
D1. Develop a mathematical vocabulary by expressing mathematical ideas orally and in writing. D2. Enhance and reinforce the student's understanding of concepts through the use of technology when appropriate.	- Writing on the blackboard - Ask students questions and discuss them - Solve various issues	Give homework assignments	- Classroom presentations - Discussion - Final exam

8. Text Book:

The main reference	Elementary Linear Algebra: Applications
Author(s)	Anton, Howard, and Rorres, Chris.
Publisher	JOHN WILEY & SONS, INC.
Year	2014
The edition	11th edition
The reference website	https://drive.google.com/file/d/1jxqMsCIEhvJLopeDEpnJnED4K4W07 TQj/view?usp=sharing

9. <u>References and additional resources:</u>

1)	T. S. Blyth and E. F. Robertson, <i>Basic Linear Algebra</i> (Springer, London, 2nd edition 2002).	
2)	C. W. Curtis, <i>Linear Algebra An Introductory Approach</i> (Springer, New York, 4th edition, reprinted 1994).	
3)	R. B. J. T. Allenby, <i>Linear Algebra</i> (Arnold, London, 1995).	