جامعة آل البيت دائرة ضمان الجودة والتخطيط

Al al-Bayt University

College of Sciences

Department of Mathematics

Course Syllabus: Partial Differential Equations(1) First semester 2019

1. Instructor Information

Instructor Name	Husein Mahmoud Jaradat
Office Hours	[Sunday, Tuesday and Thursday: 9:30-10:00, 12:00-13:00, 14:00-14:30]
Office Number and Telephone Extension	2199
Email:	<u>husseinjaradat@yahoo.com</u>

2. Course Description

Introduction to Partial Differential Equations(PDEs), second order equations and classification into canonical forms (parabolic, elliptic, and hyperbolic), Sturm-Liouville boundary-value problems, Fourier series: a basic Fourier series, Fourier sine and cosine series, separation of variables for linear homogeneous PDEs, the heat equations, wave equations, Laplace's equation and potential equation in a disk, Fourier transforms for finding solution of PDEs, Fourier sine and cosine transforms for finding solution of PDEs.

3. Course Information

1

Course Number: 401304	Course Title: Partial Differential Equations (1)	Level: Third year
Delivery Mode: Lecture	Pre-requisite: 401272	Day(s) and Time: Sunday, Monday, Tuesday and Wednesday: 11:45-13:00
Academic year: 2019-2020	Semester: First semester	Credit Hours: 3

4. Course Objectives

The main purpose of this course is to introduce fundamental concepts of the theory of partial differential equations (PDEs). By the end of the semester the students should be able to 1. provide examples of real-world problems modeled with Partial Differential Equations (PDEs) and classify PDEs with respect to dimension, linearity, order, and canonical forms.

2. apply some methods of solving ordinary differential equations to solve PDEs.

3. understand basic properties of eigenvalue problems.

4. determine different types of Fourier series for periodic functions.

5. use separation of variables method for solving BVPs (Heat equation, the wave equation, Laplace's equation and potential equation in a disk).

6. use different types of Fourier transforms for finding solution of PDEs.

7. use different types of finite Fourier transforms for finding solution of PDEs.

5. Intended Student Learning Outcomes

Successful completion of the course should lead to the following outcomes: **1) Knowledge and Understanding Skills:** Student is expected to

* be able to classify PDEs with respect to dimension, linearity and the order.

* be able to find canonical forms

* be able to recognize situations that partial differential equations can be used and formulate problems with such a tool.

- * be able to solve Sturm-Liouville problems.
- * be able to use the method of separation of variables.
- * be able to understand of trigonometric Fourier series and other orthogonal expansions.
- * be able to apply integral transforms to solve problems on unbounded domains.
- * be able to solve PDEs problems in coordinate systems other than rectangular.

2) Professional Skills

Use mathematical methods (method of finite Fourier transforms, the Fourier integral transforms, method of separation of variables) to describe, solve and interpret real- world problems.

3) General Competences (Transferable skill and attributes)

- Study main properties of the classical equations of Mathematical Physics.
- Develop and practice disciplined habits of successful learning such as
 - * Attending class regularly making sure to arrive on time ready to focus and staying to the end of each class.
 - * Preparing for each class by prior textbook reading, making a list of questions.
 - * practicing with problems, etc.
 - * Taking responsibility for one's own learning—staying up to date in everything that concerns the course.
- Encourage the development of
 - * Critical thinking
 - * Estimation skills
 - * Elementary problem solving

6. Course Content

Teaching Week	Topics/Activities to be Covered
1	Introduction to partial differential equations(PDE).
2	Classification of PDE.
3	The Cononical form of 2nd order PDE.
4	The Cononical form of 2nd order PDE.
5	The Sturm-Liouville Eigenvalue Problems.
6	Fourier Series, Fourier Cosine and Sine series.
7	First Exam
8	Heat equation: Derivation and boundary conditions, Steady-
	state temperatures, fixed ends temperatures, Different boundary condition
9	The wave equation: The vibrating string, solution of the
	vibration string problem.
10	Laplace's equation: Solutions and qualitative properties
11	Laplace Equation for a Circle, Circular Annulus.
12	Second Exam.
13	Fourier Transforms and its Applications to PDEs Integral Transforms
	Methods: The Fourier Transform, The Finite Fourier Transforms (Sine
	and Cosine Transforms)
14	Fourier sine and cosine Transforms and its Applications to PDEs
15	The Finite Fourier Transforms (Sine and Cosine Transforms) and its Applications to PDEs.
16	Final Exam

7. Teaching and learning Strategies and Evaluation Methods

Learning Outcomes	Teaching Strategies	learning Strategies	Evaluation Methods
 be able to classify PDEs with respect to dimension, linearity and the order be able to find canonical forms be able to solve Sturm-Liouville problems. 	 Writing on the blackboard Ask students questions and discuss them Solve various issues 	Give homework assignments	 Classroom presentations Discussion First exam
 be able to find the solution for PDEs (Heat equation, the wave equation, Laplace's equation and potential equation in a disk) by using the method of separation of variables 	 Writing on the blackboard Ask students questions and discuss them Solve various issues 	Give homework assignments	 Classroom presentations Discussion Second exam
 be able to apply Foureir transforms to solve problems on unbounded domains. be able to apply different types of finite Fourier transforms for finding solution of PDEs. 	 Writing on the blackboard Ask students questions and discuss them Solve various issues 	Give homework assignments	 Classroom presentations Discussion Final exam

8. Assessment

Assessment	Grade Proportion	n Week/Dates	
Class Work (Quizzes, Homework and Attendance of the lecture)			
First exam	25%	7th Week	
Second midterm exam	25%	12th Week	
Final exam	50%	End of Semester	
Total	100%		

9. Text Book

The main reference	Partial Differential Equations for Scientists and Engineers
Authors	Tyn Myint-U and Lokenath Debnath
Publisher	Appleton & Lange
Year	1987
The edition	3rd. edition
The reference website	/www.abebooks.com/book-search/author/tyn-myint-u-lokenath-debnath

10. References and additional resources

1-	Elementary Applied Partial Differential Equations, Richard Haberman
2-	Partial Differential Equations for Scientists and Engineers, Stanley J. Farlow, Willy & Sons, 1982.
3-	An Introduction to Partial Differential Equations , Y. Pinchover, J. Rubenstein , Cambridge, 2005.