A Proposed Software Reliability……………..........…...…...……..Omar Shatnawi

A Proposed Software Reliability Model for Distributed Systems
Received: 11/9/2006 Accepted: 14/12/2006
Omar Shatnawi*

	Assistant professor, Department of Computer Science, Al al-Bayt University.
	*

1. Introduction:
 Distributed systems are being developed in the context of the client-server architecture. Client-server architectures dominate the landscape of computer-based systems. Everything from automatic teller networks to the Internet exists because software residing on one computer -the client- requests services and/or data from another computer-the server. Client-server software engineering blends conventional principles, concepts, and methods with element of object-oriented and computer-based software engineering to create client-server systems. Client-server systems are developed using the classical software engineering activities. The only way to verify and validate the software is by testing. The importance of modelling and analysis of software failure occurrence or fault removal phenomenon during testing has been well recognized and many studies have addressed this problem. An important objective of most of these investigations has been to develop analytical models for the fault removal phenomenon in order to compute quantities of interest such as the number of faults removed, the number of remaining faults and the software reliability function. Such quantities are useful for planning purposes, in both the development and the operational phases of the software systems.

 Several software reliability models have been developed in the literature to monitor the fault removal process and measure and predict the reliability of the software systems (Musa et al., 1987; Xie, 1991; Lyu, 1996; Musa, 1999; Kapur et al., 1999; Pham, 2000). It has been observed that the relationship between the testing time and the corresponding number of faults removed is either Exponential or S-shaped or the mix of two. An interesting inference can be made regarding the analysis namely all the models are robust and can be used for any testing environment and can be termed as Black-Box models, which are used without having any information about the nature of the software being tested. However, if one has to develop what is called White-Box model, one needs to know about the software technology, which has been used to develop the software. Thus, it is imperative to clearly understand the software development environment and accordingly there is need to develop a model, which can explicitly explain the software technology that has been used to develop the software and now being tested. Thus, it is important that the software reliability model should explicitly take into account the faults of different severity (Kapur et al., 1999(2004a)). Such a modelling approach was earlier adopted by (Kapur et al., 1999(2004b)). This approach can capture variability in the growth curves depending on the environment it is being used and at the same time it has the capability to reduce either to exponential or S-shaped growth curves. These models are very much suited for object-oriented programming and distributed development environments.
 Considerable evidence from industry case studies indicates substantial business benefit can be derived from aggressive software reuse. Product quality, development productivity, and overall cost are all improved. In ideal setting, a software component that is developed for reuse would be verified to be correct and would contain no defect. In reality, formal verification is not carried out routinely, and defects can and do occur. However, with each reuse, defects are found and eliminated, and a component’s quality improves as a result. In a study conducted at Hewlett-Packard (HP), Lim reports that the defect rate for reused code is 0.9 defects per KLOC, while the rate for newly developed software is 4.1 defects per KLOC. When reusable components are applied throughout the software process, less time is spent creating the plans, models, documents, code, and data that are required to create a deliverable system. Productivity can be increased not only by reducing coding time, but also by reducing testing time and documentation times. Moreover, reusing components may increase performance and reliability (Pressman, 2001). For more details see (Lim, 1994).

 The rest of this paper is organized as follows: Section 2 derives the proposed model. Section 3 defines some software reliability measures. Sections 4 and 5 discuss the methods used for parameter estimation and the criteria used for validation and evaluation of the proposed model. The applications of the proposed model to actual software reliability data through data analyses and model comparisons are shown in Section 6. We conclude this paper in Section 7.

2. Software Reliability Modelling:
2.1. Proposed Model Development:
 The software development environment is changing from a host-concentrated one to a distributed one due to cost and quality aspects and rapid growth in network computing technologies. Under this environment software modules/components can be developed at different geographical locations and modules used in other software can be re-used.

 (Yamada et al., 2000) have constructed a software reliability model based on an NHPP, which incorporates the exponential software reliability model (Goel and Okumoto, 1979), and the delayed S-shaped model (Yamada et al., 1983) for software systems developed under such an environment. They assume that a software system consisting of n reused software components and m newly developed software components. It is empirically known that the cumulative number of detected faults is an exponential curve when a software system consisting of several used software components are tested in the testing phase; while on the other hand, the cumulative number of faults is described by an S-shaped growth curve when the newly developed software component is used. Under these assumptions they formulate a model based on NHPP for a distributed development environment as

[image: image1.wmf](

)

(

)

{

}

ú

û

ù

ê

ë

é

-

+

-

+

-

-

=

å

å

=

+

+

+

=

m

j

j

n

j

n

j

n

n

i

i

i

t

b

t

b

p

t

b

p

a

t

H

1

1

)

exp(

1

1

)

exp(

1

)

(

 (1)

where
a Expected number of initial inherent faults.

 bi Software failure rate per inherent fault for the ith software module.

 pi Weight parameter which expresses the proportion of the total testing load for the software component and (∑pi=1, pi>0).

 The above model was found to describe only both the purely exponential growth curve and the highly S-shaped growth curve according to the value of the weight parameters pi(i=1,2,…,n+m). Though the authors of the model argue that if we can estimate the values of the weight parameters reasonably, we can obtain software reliability assessments measures more accurately, they have assumed prespecified testing-weight parameters for each software component.

 Thus, there is a great need to develop a new software reliability model for capturing a wide class of reliability growth curves ranging from purely exponential to highly S-shaped depending on the environment. Different from the above model, the proposed model incorporates a logistic learning function during the fault removal phase and the values of the testing-weight parameters are estimated for capturing a wide class of reliability growth curves. We feel the problem can be better formulated using the proposed model developed below.

2.2. Proposed Model Assumptions and Notations:
2.2.1. Model Assumptions:
1. Fault removal phenomena follows an NHPP with mean value function m(t).

2. Software is subject to failures during execution caused by the remaining faults.

3. Software is composed of a finite number of newly developed and reused components / modules.

4. From our discussion in the introduction it follows that the ratio of fault exists in reused to newly developed modules is about 1 to 4.

5. Software reliability growth in the reused modules is uniform and in the newly developed module is not.

6. Each time a failure occurs, an immediate (delayed) effort takes place to decide the cause of the failure in order to remove it. The time delay between the failure observation and its subsequent fault removal is assumed to represent the severity of the faults.

7. The fault removal process (i.e., the debugging process) is prefect.

8. Fault removal rate of the reused modules is proportionality constant.

9. Fault removal rate of the newly developed modules is a logistic function as it is expected the learning-process will grow with time.

10. The expected number of faults removed in (t, t + ∆t) is proportional to the number of faults remaining to be removed.

2.2.2. Model Notations:
a
Over-all fault-content of the software(∑ai +∑aj = a).

ai(=ahi)
Total content of fault-type i (i=1,2,…,m).

aj(=ahj)
Total content of fault-type j (j=1,2,…,n).

hi(hj)
Proportion of fault-type i(j) (0<hi
[image: image2.wmf]£

0.2, 0<hj
[image: image3.wmf]£

0.8, ∑hi +∑hj = 1).

bi
Proportionality constant represents the failure rate / fault isolation / fault removal rate per fault-type i.

bj
Proportionality constant represents the failure rate / fault isolation rate per fault-type j

bj(t)
Logistic learning function, i.e., fault removal rate per fault-type j.

mjf(t)
Mean number of failures caused by fault-type j by time t.

mjs(t)
Mean number of fault isolated of fault-type j by time t.

mjr(t)
Mean number of fault removed of fault-type j by time t.

β
Constant parameter in the logistic learning function.

2.3. Proposed Model Formulation:
2.3.1 Modelling the Fault Removal Phenomena of ‘i’ Reused Modules:
The easy to remove fault is modelled as a one-stage process

[image: image4.wmf](

)

)

(

)

(

t

m

a

b

t

m

dt

d

ir

i

i

ir

-

=

 (2)

 The one-stage process as modelled in equation (2) describes the failure observation, fault isolation and fault removal processes. Solving the differential equation (2) under the boundary condition mir(t=0)=0, we get

[image: image5.wmf](

)

)

exp(

1

)

(

t

b

a

t

m

i

i

ir

-

-

=

 (3)

2.3.2 Modelling the Fault Removal Phenomena of ‘j’ Newly Developed Modules:
The difficult to remove fault is modelled as a three-stage process,

[image: image6.wmf](

)

)

(

)

(

t

m

a

b

t

m

dt

d

jf

j

j

jf

-

=

 (4)

[image: image7.wmf](

)

)

(

)

(

)

(

t

m

t

m

b

t

m

dt

d

js

jf

j

js

-

=

 (5)

[image: image8.wmf](

)

)

(

)

(

)

(

)

(

t

m

t

m

t

b

t

m

dt

d

jr

js

j

jr

-

=

 (6)

where

[image: image9.wmf])

exp(

1

)

(

t

b

b

t

b

j

j

j

-

+

=

b

 The first stage of the three-stage process as modelled in equation (4) describes the failure observation. The second stage modelled in equation (5) describes the fault isolation process. The third stage modelled in equation (6) describes the fault removal process.

 Solving the differential equations (4), (5) and (6) under the boundary conditions mjf(t=0)=0, mjs(t=0)=0 and mjr(t=0)=0 respectively, we get

[image: image10.wmf])

exp(

1

)

exp(

)

2

1

(

1

)

(

2

2

t

b

t

b

t

b

t

b

a

t

m

j

j

j

j

j

jr

-

+

-

+

+

-

=

b

 (7)

2.4. Modelling the Total Fault Removal Phenomenon:
 The proposed model is the superposition of the two NHPP with mean value functions given in equations (3) and (7). Thus, the mean value function of the superposed NHPP is

[image: image11.wmf](

)

å

å

å

å

+

=

=

+

=

=

-

+

-

+

+

-

+

-

-

=

+

=

n

m

j

j

j

j

j

j

m

i

i

i

n

m

j

jr

m

i

ir

r

t

b

t

b

t

b

t

b

a

t

b

a

t

m

t

m

t

m

1

2

2

1

1

1

)

exp(

1

)

exp(

)

2

1

(

1

)

exp(

1

)

(

)

(

)

(

b

 (8)

 Suppose the software is composed of two reused modules and two newly developed modules, the proposed model given in equation (8) can be re-written as

[image: image12.wmf](

)

å

å

=

=

-

+

-

+

+

-

+

-

-

=

4

3

2

2

2

1

)

exp(

1

)

exp(

)

2

1

(

1

)

exp(

1

)

(

j

j

j

j

j

j

i

i

i

r

t

b

t

b

t

b

t

b

a

t

b

a

t

m

b

 (9)

Where
[image: image13.wmf](

)

a

a

a

a

a

b

b

b

b

h

ah

a

ah

a

h

a

ah

a

ah

a

=

+

+

+

=

=

-

=

=

-

=

=

=

4

3

2

1

4

3

2

1

3

4

4

3

3

1

2

2

1

1

,

,

),

8

.

0

(

,

),

2

.

0

(

,

3. Software Reliability Evaluation Measures:

Let
[image: image14.wmf]]

0

);

(

[

³

t

t

N

 denotes a discrete counting process representing the cumulative number of failures experienced up to time t, then it can normally be modelled as an NHPP with mean value function
[image: image15.wmf])

(

t

m

. The NHPP model with
[image: image16.wmf])

(

t

m

 is formulated by

[image: image17.wmf]{

}

[

]

[

]

0

,

)

(

exp

!

)

(

)

(

Pr

³

-

=

=

f

f

x

f

x

t

m

x

t

m

x

t

N

f

 (10)

3.1. Expected Number of Remaining Faults:
 Let W(t) denotes the number of faults remaining in the software at time t, then

[image: image18.wmf])

(

)

(

)

(

t

N

N

t

W

-

¥

=

 (11)

 Suppose xf faults have been found by the testing time t. The conditional distribution of W(t), given that N(t)=xf, is given by

[image: image19.wmf]{

}

{

}

0

,

,

)

(

Pr

)

(

|

)

(

Pr

³

+

=

¥

=

=

=

n

f

n

f

f

n

x

x

x

x

N

x

t

N

x

t

W

 (12)

The excepted value of W(t) is given by

[image: image20.wmf]{

}

)

(

)

(

)

(

)

(

t

H

t

m

m

t

W

E

=

-

¥

=

 (13)

which equivalent to the variance of W(t).

3.2. Software Reliability:

Suppose xr faults have been removed by time t. The conditional distribution of W(t), given that N(t)=xr, is given by

[image: image21.wmf]{

}

[

]

[

]

0

,

,

)

(

exp

!

)

(

)

(

|

)

(

Pr

³

-

=

=

=

d

r

d

x

r

d

x

x

t

H

x

t

H

x

t

N

x

t

W

d

 (14)

which means a Poisson distribution with mean H(t), independent of xr.

The probability of no fault (failures) removed (occurred) in the interval time (t,t+s] where s is the mission time, given that
[image: image22.wmf]0

x

 faults (failures) have been removed (occurred) by time t, is given by

[image: image23.wmf][

]

{

}

0

,

)

(

)

(

exp

)

|

(

³

-

+

-

=

s

t

m

s

t

m

t

s

R

 (15)

which means a reliability function in time t, independent of xo.

This is the conditional reliability function.

4. Parameter Estimation Technique:
 The maximum likelihood estimation (MLE) method is used to estimate the unknown parameters of the proposed model given in equation (9). Since the data set used is given in the form of pairs (ti,xi)(i=1,2,...,k), where xi is the cumulative number of faults removed by time ti(0<t1<t2<…<tk) and ti is the accumulated time spent to remove xi faults (Xie, 1991; Kapur et al., 1999; Pham, 2000).

 The likelihood function ‘L’ for the unknown parameters with m(t) is given as

[image: image24.wmf](

)

[

]

(

)

(

)

Õ

=

-

-

-

-

-

-

-

-

=

-

k

i

i

i

i

i

x

x

i

i

i

i

t

m

t

m

x

x

t

m

t

m

x

t

parameters

L

i

i

1

1

1

1

)

(

)

(

exp

)!

(

)

(

)

(

)

,

(

|

1

 (16)

Taking natural logarithm of equation (16) we get

[image: image25.wmf][

]

{

}

[

]

å

å

=

-

-

-

=

-

-

-

-

-

-

-

=

k

i

i

i

i

i

i

i

k

i

i

i

x

x

t

m

t

m

t

m

t

m

x

x

L

1

1

1

1

1

1

)!

(

ln

)

(

)

(

)

(

)

(

ln

)

(

ln

 (17)

 The MLE of the parameters can be obtained to by maximizing ‘L’ with respect to the following parameters constraints: (a>0, 0<hi
[image: image26.wmf]£

0.2, 0<bi<1, 0<hj
[image: image27.wmf]£

0.8, 0<bj<1, β≥0).

5. Model Validation and Evaluation:
 To check the validity of the proposed model given in equation (9) to describe the software reliability growth, it has been tested on an actual software reliability data cited from a real software development project (Yamada et al., 2000). This data set had been collected during 19 weeks of testing of a PL/1 database application program of size 1,317K LOC, 328 faults were removed during the period.

 The performance of an software reliability model judged by its ability to fit the past software fault / failure data (Goodness of Fit) and to predict satisfactorily the future behavior from present and past data behavior (Predictive Validity) (Musa et al., 1987; Kapur et al., 1999).
5.1. The Goodness of Fit Criteria:
5.1.1. The Sum of Squared Error (SSE):
 This metrics measures the distance of a model estimate value from the actual data, as follows

[image: image28.wmf](

)

å

=

-

=

k

i

i

i

x

t

m

SSE

1

2

)

(

ˆ

 (18)

 where k is the number of observations,
[image: image29.wmf])

(

ˆ

i

t

m

 is the estimated cumulative number of faults by time ti obtained from the fitted mean value function of equation (9) and xi is the total number of faults removed by time ti. Lower value of SSE indicates less fitting error, thus better goodness of fit.

5.1.2. The Akaike Information Criterion (AIC)

This criterion was first proposed as an software reliability model selection tool by (Khoshogoftaar and Woodcock, 1991) and defined as

[image: image30.wmf](

)

N

function

Likelihood

of

Max

AIC

´

+

´

-

=

2

.

log

2

 (19)
where N is the number of the parameters used in the model

 Lower value of AIC indicates more confidence in the model thus a better fit and predictive validity. In other words, we evaluate the performance of the models using SSE, AIC metrics. For SSE and AIC, the smaller the metric value the better the model fits relative to other models run on the same data set.

6. Data Analyses and Model Comparisons

6.1 Goodness of Fit Analysis

 Using the MLE method, it has been observed that the proportion parameters (h1, h2, h3, h4) values of the proposed model are (0.1686, 0.0314, 0.5455, 0.2545) respectively. In (Yamada et al., 2000) they assumed these values to be (0.05, 0.05, 0.45, 0.45) respectively. The resultant parameters estimation and the goodness of fit metrics of the models under comparison are given in Table I. It is observed that the test skill of the test-team is improving during testing and the proposed model is the best in terms of goodness of fit metrics which is very encouraging. The fault-content of each module based on the models under comparison are given in Table II. The fitting of the models under comparison model to the actual cumulative number of faults are graphically illustrated in Figures 1 and 2. It is clearly seen that the proposed model fits the actual data better than (Yamada et al., 2000) model.

6.2. Software Reliability Measurements Analysis:
 The fitting of the models under comparison to the actual remaining cumulative number of faults is graphically illustrated in Figures 3 and 4. It is clearly seen that the proposed model fits the actual data better. Figures 5 and 6 illustrate the software reliability growth for three cases I, II and III, i.e., when the mission time ‘x’ is one day, half week and one week respectively. It is observed that the reliability is improving during testing and the proposed model has shown better results compared with the (Yamada et al., 2000) model.

7. Conclusions

 The client-server architecture is used as a platform for distributed system development. While early software system moved toward centralization and resulted in monolithic gigantic system in the seventies and early eighties, the trend reversed toward more decentralization and autonomy in the late eighties. Most major vendors redirected their effort from developing a “pure” software system product into developing systems based on client-server, or toward developing active heterogeneous systems. In this paper a new software reliability model based on the NHPP, that measures software reliability growth phenomenon in a distributed development environment, is proposed. The proposed model has been validated, evaluated and compared by applying them to an actual software reliability data cited from a real software development project. The results are fairly encouraging in terms of goodness of fit software reliability evaluation measures due to applicability and flexibility of the models as it can capture a wide class of reliability growth curves ranging from purely exponential to highly S-shaped. We feel the proposed model depicts the distributed devolvement environment more realistically.

Acknowledgment:
 The author acknowledges with gratitude the suggestions of the referees, which helped in revising the paper.
Tables and Figures

Table I: Parameter Estimation and Goodness of Fit Metrics Results

	Models under

Comparison
	Parameter Estimation
	Comparison Criteria

	
	a
	b1,2
	b3,4
	
[image: image31.wmf]b

	SSE
	AIC

	(Yamada et al., 2000)
	378.12
	0.4654
	0.1788
	—
	2374.73
	213.67

	Proposed
	364.73
	0.4859
	0.2846
	2.0044
	1173.88
	212.56

Table II. Software Components Fault-Content Results

	Models under

Comparison
	Reused Modules
	Newly Developed Modules

	
	Module 1
	Module 2
	Module 3
	Module 4

	
	a1
	a2
	a3
	a4

	(Yamada et al., 2000)
	18.91
	18.91
	170.15
	170.15

	Proposed
	61.50
	11.45
	198.97
	92.81

 [image: image32.emf]Goodness of Fit

0

82

164

246

328

0 5 10 15 20

Testing Time (weeks)

Cumulative Faults

Actual Data

Estimated Values by Proposed Model

 [image: image33.emf]Goodness of Fit

0

82

164

246

328

0 5 10 15 20

Testing Time (weeks)

Cumulative Faults

Actual Data

Estimated Values by (Yamada et al., 2000) Model

Fig. 2

 Fig. 1
[image: image34.emf]Expected Remaining Faults

0

82

164

246

328

0 5 10 15 20

Testing Time (weeks)

Cumultaive Faults

Actual Data

Estimated Values by Proposed Model

 [image: image35.emf]Expected Remaining Faults

0

82

164

246

328

0 5 10 15 20

Testing Time (weeks)

Cumultaive Faults

Actual Data

Estimated Values by (Yamada et al., 2000) Model

Fig. 4

 Fig. 3
[image: image36.emf]Software Reliability

0

0.2

0.4

0.6

0.8

1

0 8 16 24 32 40

Testing Time (weeks)

Conditinal Reliability

Estimated & Predicted by Proposed Model (case-I)

Estimated & Predicted by Proposed Model (case-II)

Estimated & Predicted by Proposed Model (case-III)

 [image: image37.emf]Software Reliability

0

0.2

0.4

0.6

0.8

1

0 8 16 24 32 40

Testing Time (weeks)

Conditinal Reliability

Estimated & Predicted by (Yamada et al., 2000) Model (case-I)

Estimated & Predicted by (Yamada et al., 2000) Model (case-II)

Estimated & Predicted by (Yamada et al., 2000) Model (case-III)

Fig. 6

 Fig. 5
References:
Goel, A.L; and Okumoto, K. Time Dependent Error Detection Rate Model for Software Reliability and other Performance Measures. IEEE Transactions on Reliability, 28(3): 206-211, 1979.

Kapur, P.K; Bardhan, A.K; and Shatnawi, Omar. 2004a. Why Software Reliability Growth Modelling should Define Errors of Different Severity. Quality Control and Applied Statistics, 49(6): 699-702.

Kapur, P.K; Garg, R.B; and Kumar, S. Contributions to Hardware and Software Reliability, World Scientific, 1999.

Kapur, P.K; Shatnawi, Omar; and Yadavalli, V.S.S. A Software Fault Classification Model. South African Computer Journal, 33: 1-9, 2004b.

Khoshogoftaar, T.M; and Woodcock, T.G. Software Reliability Model Selection: A Case Study, In: Proceedings of the International Symposium on Software Reliability Engineering, 183-191, 1991.

Lim, W.C. Effects of Reuse on Quality, Productivity and Economics. IEEE Transactions on Software, 11(5): 23-30, 1994.

Lyu, M.(editor). Handbook of Software Reliability Engineering. McGraw-Hill: New York, 1996.
Musa, J.D. Software Reliability Engineering. McGraw-Hill, 1999.

Musa, J.D; Iannino, A; and Okumoto, K. Software reliability: Measurement, Prediction, Applications. Mc Graw Hill: New York, 1987.
Pham, H. Software Reliability. Springer-Verlag, 2000.

Pressman, R.S. Software Engineering: A Practitioner’s Approach, 5th Edition, McGraw-Hill, 2001.

Xie, M. Software Reliability Modelling. World Scientific, 1991.

Yamada, S.; Ohba, M; and Osaki, S., S-shaped Reliability Growth Modelling for Software Error Detection. IEEE Transactions on Reliability, 32: 475-478, 1983.

Yamada, S; Tamura, Y; and Kimura, M. A Software Reliability Growth Model for a Distributed Development Environment. Electronics and Communications in Japan: Part 3, 83(12): 1-8, 2000.
ملخص

 تُطوَّر النظم الموزعة في إطار هيكلية الزبون/ الخادم. وهي تحتل الصدارة في البرمجيات. وتبنى بواسطة هندسة البرمجيات الكلاسيكية. ويعتقد على نطاق واسع بأنّ إعادة إستعمال الاتجاه الرئيسي لتطوير البرامجيات وتحسين الإنتاجية والنوعيه. في هذه الورقه، بذلت محاولة لصياغه ظاهرة العول ونموها للبرامجيات في بيئة تطوير موزعة. يقوم النموذج المقترح على افتراض أن البرمجيات تتألف من عدد محدود من الوحدات المستخدمة والمطورة حديثاً. الوحدات المستخدمة لا تعتبر تأثير درجة تعقيد إزالة الخطأ على ظاهرة نمو عول البرمجيات، بينما الوحدات التي طورت حديثاً تعتبر ذلك التأثير. لذلك نمذجة عملية إزالة الخطأ فيهما منفصلة، وظاهرة إزالة الخطأ للبرمجيات هي مجموع كل عمليات إزالة الأخطاء. لإثبات النموذج المقترح استخدمت بيانات حقيقية.

Abstract

 Distributed systems are being developed in the context of the client-server architecture. Client-server architectures dominate the landscape of computer-based systems. Client-server systems are developed using the classical software engineering activities. Reusability is widely believed to be a key direction to improving software development productivity and quality. In this paper, an attempt has been made to model the softwarereliability growth phenomenon in a distributed development environment. The proposed model is based on the assumption that the software system is composed of a finite number of reused and newly developed modules. The reused modules do not consider the effect of the impact (severity) of the fault-type (complexity) on the software reliability growth phenomenon (i.e., the growth is uniform). The newly developed modules do consider the effect of the impact of the fault-type on the software reliability growth phenomenon. Accordingly, the fault removal process is modelled separately and the total fault removal phenomenon is the sum of the fault removal process of all. Actual software�

reliability data have been used to demonstrate the proposed model.

Keywords: Software Engineering,, Distributed Development Environment, Software Testing, Software Reliability, Non-Homogenous Poisson Process (NHPP), Fault Severity.

PAGE
22
Al-Manarah, Vol. 14, No. 3, 2008.

_1141573645.unknown

_1144247374.unknown

_1144357357.unknown

_1195111229.unknown

_1195111277.unknown

_1195111361.unknown

_1144358851.unknown

_1195111165.unknown

_1144358585.unknown

_1144247391.unknown

_1141829414.unknown

_1142284241.unknown

_1142967983.unknown

_1144246694.unknown

_1141920938.unknown

_1141578446.unknown

_1141578894.unknown

_1141678081.unknown

_1141573651.unknown

_1140263932.unknown

_1141573469.unknown

_1141573637.unknown

_1141573488.unknown

_1141573460.unknown

_1136914807.unknown

_1140211985.unknown

_1136914845.unknown

_1136279048.unknown

