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1. Introduction:
A pandiagonal magic square is a n×n matrix
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      where the entries 
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 are distinct real numbers (usually integers) satisfying the following system of equations:
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      where S is a real constant (the so-called magic sum). In this system the group (1 – a) represents the summation of the entries in each row of the matrix. The group (1 – b) represents the summation of the entries in each column of the matrix. The group (1 – c) represents the summation of the entries in each right (extended) diagonal of the matrix. The group (1 – d) represents the summation of the entries in each left (extended) diagonal of the matrix. We will prove that the linear system (1) will have a solution, which contains 

n*n – 4*n + 3

free parameters, if n is odd, and 

n*n – 4*n + 4

free parameters, if n is even.

2. The case of odd pandiagonal magic square:
      We consider here the linear system (1), where n is of the form 2k+1 (k = 2, 3, …), since there is no pandiagonal magic square in the case k = 1. We illustrate first our theoretical approach by considering the case k = 2, i.e. We consider the square
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In this case the system (1) takes the form: 
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      In the system (2 – a), …, (2 – d), there are three equations, which are linearly dependent on the other equations. These equations are: the last equation of the group (2 – b), the last equation of the group (2 – c) and the last equation of the group (2 – d). Indeed, the last equation of the group (2 – b) is the result of subtraction of the sum of all other equations of the group (2 – b) from the sum of all equations of the group (2 – a). The last equation of the group (2 – c) is the result of subtraction of the sum of all other equations of the group (2 – c) from the sum of all equations of the group (2 – a). The last equation of the group (2 – d) is the result of subtraction of the sum of all other equations of the group (2 – d) from the sum of all equations of the group (2 – a).

      In order to prove that there are no other dependent equations, we write down the matrix of coefficients of the system after removing the previous mentioned equations:
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      We then prove that this matrix has full rank. To establish this we consider the transpose of this matrix:
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      and prove that this matrix has full rank. In order to do this we study the equation of linear dependence between the columns of the last matrix:
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      We conclude from the last equation of the group (4 – a) that 
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Since the summation of the equations in (4 – b) yields
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Hence, we deduce from (5) that 
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      Using our knowledge about 
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 we are capable of rewriting the system (4) like this:
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      When comparing the left side of the first equation in (6 – b) with the left side of the first equation in (6 – e) we obtain


[image: image34.wmf]15

11

b

b

=


In the same manner we get the following relations
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We substitute now these values in the system (6) obtaining the system
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If we compare the first equation in (7) with the first equation in (6 – b), we get 
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. If we compare the second equation in (7) with the second equation in (6 – c) and so on, we obtain the following relations
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We can then rewrite them as the linear system
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The matrix of coefficients of this system is
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      which is strictly diagonally dominant. Thus, it is invertible (cf. [1]) and, hence, the last linear system has the trivial solution, only. Due to the previous relations between the variables 
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      Setting all variables 
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 represents a solution of the nonhomogenous linear system (2). Since we have 25 variables and 20 equations, the solution of the nonhomogenous linear system (2) has according to our analysis 25 – 20 + 3 = 8 free parameters (cf. [2]).

      In order to prove this result in general, we follow the same steps as in the case of 5x5 square. We have now to study the equation of linear dependence between the columns of the transpose matrix of (3) in general:
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      We conclude from the last equation of the group (8 – 1) that 
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      Using our knowledge about 
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      When comparing the left side of the first equation in (9 – 2) with the left side of the first equation in (9 – n) we obtain
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We substitute now these values in the system (9) obtaining the system
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      If we compare the first equation in (10) with the first equation in (9 – 2), we get 
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The matrix of coefficients of this system is


[image: image64.wmf]÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

è

æ

-

-

-

-

-

2

1

0

0

0

0

0

0

.......

0

0

0

0

2

0

0

0

0

0

1

0

0

0

0

0

0

0

2

0

0

0

0

0

0

1

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

1

0

0

0

0

0

2

-

0

0

0

0

0

0

.....

0

0

0

0

1

0

2

0

0

0

0

     

          

          

          

0

0

0

1

2

L

L

L

L

L

L

 ……(11)

      which is strictly diagonally dominant. Thus, it is invertible (cf. [1]) and, hence, the last linear system has the trivial solution, only. Due to the previous relations between the variables 
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 represents a solution of the nonhomogenous linear system (1). Since we have n*n variables and 4*n equations, the solution of the nonhomogenous linear system (1) has according to our analysis n*n – 4*n + 3 free parameters (cf. [2]).

3. The case of double-even pandiagonal magic square:
      We consider the linear system (1 – a), (1 – b), (1 – c) and (1 – d), where n is of the form 2k (k = 2, 4, …). In this system there are four equations, which are linearly dependent on the other equations. These equations are the same three equations as in the odd squares beside the (n-1)th equation of the group (1 – d), which is the result of subtraction of the sum of all other odd-ranked equations of the group (1 – d) from the sum of all odd-ranked equations of the group (1 – a).

      Since k = 2 yields a very special case, we start illustrating it: As in the case of odd squares, we consider the matrix of coefficients of the system after removing the previous mentioned equations. This matrix will be the same as the matrix (3) after deleting the last row. We then consider the transpose of this matrix, which has now one column less. We prove that this matrix has full rank by studying the equation of linear dependence between the columns of the matrix: 
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      We conclude from the last equation of the group (12 – 1) that 
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Since the summation of the equations in (12 – 2) yields
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      From the group (14 – 3) and the group (14 – 4 ) we conclude that 
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Doing the same with the second equation we get:
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We rewrite the equations in (16) in the following manner:
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      Using these relations, we obtain from (15) the equation 
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 represents a solution of the nonhomogenous linear system (1). Since we have 16 variables and 16 equations, the solution of the nonhomogenous linear system (1) has according to our analysis 16 – 16 + 4 = 4 free parameters (cf. [2]).

      Now, we treat the general case. As in the case of odd squares we consider the matrix of coefficients of the system after removing the previous mentioned dependent equations. This matrix will be the same as the matrix (3) after deleting the last row. We then consider the transpose of this matrix, which has now one column less. We prove that this matrix has full rank by studying the equation of linear dependence between the columns of the matrix: 
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      where 
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      We conclude from the last equation of the group (18 – 1) that 
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Since the summation of the equations in (18 – 2) yields
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      Using our knowledge about 
[image: image107.wmf]n

2

1

b

,...,

b

,

b

 we are capable of rewriting the system (18) like this:


[image: image108.wmf]0

b

b

0

b

b

b

....

0

b

b

b

0

b

b

b

2

-

3n

1

-

2n

4

-

4n

3

-

3n

2

-

2n

3n

1

2n

2

n

1

-

3n

2n

1

n

=

+

=

+

+

=

+

+

=

+

+

+

+

+

 
                ….……………..(20 – 1)


[image: image109.wmf]0

b

b

  

....

0

b

b

b

0

b

b

1

-

3n

2

-

3n

1

3n

2n

2

n

3n

1

n

=

+

=

+

+

=

+

+

+

+

                    ...….…………..(20 – 2)

…

…

…


[image: image110.wmf]0

b

....

0

b

b

b

0

b

b

2n

1

-

3n

2

2n

2

n

1

2n

1

n

=

=

+

+

=

+

+

+

+

+

 
 
   …….…………..(20 – n)

      From the group (20 
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Doing the same with the second equation, we get:
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      Continuing these comparisons till, we reach the 
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      Remember that in the case k = 2 this equation will be also the second equation, and that we have to deal with two equations, only. We rewrite the equations in (23) in the following manner:
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      Using these relations, we obtain from the equations in (21), (22) and similar equations the following linear system:
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The matrix of coefficients of this system is
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      which is strictly diagonally dominant. Thus, it is invertible and, hence, the last linear system has the trivial solution, only. Due to the previous relations between the variables 
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 we conclude that all of them are zero.

      Setting all variables 
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 represents a solution of the nonhomogenous linear system (1). Since we have n*n variables and 4*n equations, the solution of the nonhomogenous linear system (1) has according to our analysis n*n – 4*n + 4 free parameters (cf. [2]).

4. The case of simple even pandiagonal magic square:
      We consider the linear system (1), where n is of the form 2k (k = 3, 5, …): Following the same steps as in the case of double-even squares we reach the same conclusion about the values of 
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. Further, we obtain the system (20) again for their values, from which we deduce the fact that 
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. Now, by comparing the left side of the equations in the groups (20 – 1), (20 – 2), …, (20 – n) we get the same relations (21), (22) and other similar relations. But, the comparisons of the 
[image: image127.wmf]2

n

th equation in each group yields now:


[image: image128.wmf]0

b

b

...

b

b

b

b

1

-

3n

2

-

3n

5

-

4n

2

2n

4

-

4n

1

2n

=

+

=

=

+

=

+

+

+


……..……....(26)

We rearrange the equations in (26) as follows:
 
[image: image129.wmf]1

2n

4

-

4n

3

-

3n

3n

2

-

3n

1

-

3n

b

b

....

....

b

b

b

b

+

-

=

-

=

-

=

 
      We substitute these relations in the sets of equations (21), (22) and the similar sets of equations. This will generate a different linear system than in the case of double-even squares. In fact, we obtain now the following linear system:
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      When we write the coefficients of this system in the form of a matrix, we obtain the matrix (11). This is a strictly diagonally dominant matrix. Like in the first case we are so done with the proof. 
Notice: This paper is extracted from the Master thesis “A Study on Pandiagonal Magic Squares” by the student Alla Al - zahawi and supervisor Saleem Al-ashhab, Al-albayt University, May 2004.
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ملخص


      سندرس في هذا البحث أنماطاً معينة من الأنظمة الخطية والتي تمتاز بكون عدد المعادلات والمجاهيل فيها عدداً طبيعياً متزايداً. وسنحسب عدد المتغيرات الحرة في مجموعة حل النظام بشكل عام.


Abstract


      In this paper we consider linear systems of certain types, having arbitrary dimensions, and prove a rule about the number of free parameters in their solution set.
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