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1. INTRODUCTION: 
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      Contra-continuity was introduced in [6] and 
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-continuity was introduced in [7]. The aim of this paper is to introduce and study a relatively new class of continuous maps, namely co-
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-continuous maps. This is the content of Section 2. Moreover, connections to contra-continuity and
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-continuity are discussed and several characterizations of co-
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-continuity are provided. Section 3 is devoted to studying some constructions and applications via co-
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-continuity, while in Section 4 we introduce several relatively new variations of continuous maps as well as new decompositions of contra-continuity via these notions.

2. CO-
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-CONTINUITY:
      In this section, co-
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-continuity is introduced and explored. Several characterizations of this notion are provided as well as connections to some other well-known continuities are studied. We begin by recalling the following two definitions:
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      Contra-continuity and continuity are independent notions, see [6]. Obviously, every continuous map is 
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-continuous, but the converse need not be true, see [7]. Now as the identity map on the real line with the standard topology is continuous, it is 
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      Thus 
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-continuity and contra-continuity are independent notions. Next, we introduce a relatively new notion of continuity related to both continuities in Definitions 2.1 and 2.2.
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-continuous, but the converse need not be true as shown next.
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Example 2.3 Consider the maps f and g from the real line 
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      The notion of perfectly continuous maps was first introduced by [13]. Next, a relative definition is given.

Definition 2.5 A map
[image: image169.wmf]Y

X

f

®

:

 is perfectly-
[image: image170.wmf]w

-continuous if the inverse image of every open subset of Y is 
[image: image171.wmf]w

-open and 
[image: image172.wmf]w

-closed in X (simply, 
[image: image173.wmf]w

-clopen).

      Clearly, every perfectly-
[image: image174.wmf]w

-continuous map is both
[image: image175.wmf]w

-continuous and co-
[image: image176.wmf]w

-continuous, but the converse need not be true as shown next. In spite of that and the fact that both 
[image: image177.wmf]w

-continuity and co-
[image: image178.wmf]w

-continuity are independent notions, we show that 
[image: image179.wmf]w

-continuity and co-
[image: image180.wmf]w

-continuity together characterize perfectly-
[image: image181.wmf]w

-continuity.

Example 2.4 Consider the maps f and g from Example 2.3. The map f is 
[image: image182.wmf]w

-continuous which is not perfectly-
[image: image183.wmf]w

-continuous while the map g is co-
[image: image184.wmf]w

-continuous which is not perfectly-
[image: image185.wmf]w

-continuous.

Theorem 2.3 A map
[image: image186.wmf]Y

X

f

®

:

 is perfectly-
[image: image187.wmf]w

-continuous if and only if f co-
[image: image188.wmf]w

-continuous and 
[image: image189.wmf]w

-continuous.

Proof. Let V be any open subset of Y. Since f is 
[image: image190.wmf]w

-continuous, 
[image: image191.wmf])

(

1

V

f

-

is 
[image: image192.wmf]w

-open in X and since f is co-
[image: image193.wmf]w

-continuous, 
[image: image194.wmf])

(

1

V

f

-

is 
[image: image195.wmf]w

-closed in X. Hence f is perfectly 
[image: image196.wmf]w

-continuous . 

The converse is obvious.

Definition 2.6 [4] A subset A of a space 
[image: image197.wmf])

,

(

Á

X

is semi-
[image: image198.wmf]w

-open if 
[image: image199.wmf]))

(

(int

A

cl

A

w

Í

.

Definition 2.7 [3] A map
[image: image200.wmf]Y

X

f

®

:

 is 
[image: image201.wmf]w

-

semi

-continuous if the inverse image of every open subset of Y is semi-
[image: image202.wmf]w

-open . 

The following relatively new notion of continuity was given in [2].
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3. ON CONSTRUCTIONS VIA CO-
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The proof of the following result is obvious:
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      Note that Theorem 3.1 need not hold when g is only 
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-continuous and not continuous as shown next.

Example 3.2 Consider the map f from the real line 
[image: image261.wmf]Â

 with the standard topology into the space 
[image: image262.wmf]{

}

2

,

1

,

0

=

Y

 and 
[image: image263.wmf]}}

1

,

0

{

},

0

{

,

,

{

f

Y

=

Á

 defined by 
[image: image264.wmf]î

í

ì

£

>

=

0

,

1

0

,

2

)

(

x

x

x

f

 and the map 
[image: image265.wmf]}})

{

,

,

{

},

,

{

(

:

a

Z

b

a

Z

Y

g

f

d

=

=

®

 defined by
[image: image266.wmf]î

í

ì

=

=

=

1

,

2

,

0

,

)

(

x

b

x

a

x

g

. Then f is co-
[image: image267.wmf]w

-continuous and g is 
[image: image268.wmf]w

-continuous but 

[image: image269.wmf]f

g

o

 is not co-
[image: image270.wmf]w

-continuous since 
[image: image271.wmf])

,

0

(

})

({

)

(

1

¥

=

-

a

f

g

o

 is not 
[image: image272.wmf]w

-closed.

      The restriction of a co-
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-continuous as shown next.

Example 3.3 Consider the map g from Example 2.3 and the subset 
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      The following results follow from the fact that the collection of all 
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-open subsets of X is a topology on X that is finer than the original topology on X, see [5].
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Proof. Suppose that F is a closed subset of Y. Then we have 
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Next, a stronger notion than connectedness is given.

Definition 3.1 A space 
[image: image317.wmf])

,

(

t

X

 is 
[image: image318.wmf]w

-connected if 
[image: image319.wmf])

,

(

w

t

X

is connected.
      Since every open set is 
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-connected space is connected, but the converse need not be true as shown next.
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      It is well-known that a continuous image of a connected space is connected, a similar result is given next .
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To prove our final result, we recall the following lemma:

Lemma 3.2 [12] Let X be an anti- locally countable space. Then for every 
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      As an immediate consequence of the preceding lemma, we have the following result:
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Theorem 3.4 Let X be a connected anti- locally countable space and Y be a 
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4. ON VARIATIONS OF CONTINUITY:
      In this section, several new variations of continuous maps are introduced. In 
addition, contra-continuity is decomposed via these notions. We begin by recalling the following definition from [1]:
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Another relatively new notion of closed maps is given next:
Definition 4.2 A subset A of space 
[image: image361.wmf])

,

(

t

X

 is called 
[image: image362.wmf]w

-c-closed provided that there is a proper subset B of X such that 
[image: image363.wmf])

(

B

cl

A

w

Í

. A map
[image: image364.wmf]Y

X

f

®

:

 is 
[image: image365.wmf]w

g-c-closed if 
[image: image366.wmf])

(

A

f

is 
[image: image367.wmf]w

g- closed in Y for every 
[image: image368.wmf]w

-c-closed subset A of X.

Theorem 4.1 If 
[image: image369.wmf]Y

X

f

®

:

 is continuous and 
[image: image370.wmf]w

g-c-closed, then 
[image: image371.wmf])

(

A

f

is an 
[image: image372.wmf]w

g- closed subset of Y for every proper
[image: image373.wmf]w

g- closed subset A of X.

Proof Let A be any proper 
[image: image374.wmf]w

g- closed subset of X and 
[image: image375.wmf]V

A

f

Í

)

(

 where V is an open subset of Y. Then 
[image: image376.wmf])

(

1

V

f

A

-

Í

 which is open and since A is 
[image: image377.wmf]w

g-closed, then 
[image: image378.wmf])

(

)

(

1

V

f

A

cl

-

Í

w

 and
[image: image379.wmf]V

A

cl

f

Í

))

(

(

w

. Now since 
[image: image380.wmf])

(

)

(

A

cl

A

cl

w

w

Í

, then 
[image: image381.wmf])

(

A

cl

w

is 
[image: image382.wmf]w

-c-closed and by assumption
[image: image383.wmf]))

(

(

A

cl

f

w

 is 
[image: image384.wmf]w

g- closed. Therefore 
[image: image385.wmf]V

A

cl

f

cl

Í

)))

(

(

(

w

w

, but 
[image: image386.wmf]V

A

cl

f

cl

A

f

cl

Í

Í

)))

(

(

(

))

(

(

w

w

w

 which proves that 
[image: image387.wmf])

(

A

f

is 
[image: image388.wmf]w

g- closed .

      By a similar argument to that in the preceding result, we can prove the following:
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      Next, several new notions of maps are introduced and connections to co-
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-continuity are discussed. Moreover, we provide new decompositions of contra- continuity.
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For the following definition, see for example [8,10,11].
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      By a similar argument to that of the preceding Corollary, we may prove the following result:
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ملخص


     إن الهدف من هذا البحث أن نقدم وندرس صنفا جديداً نسبياً من الاقترانات �المتصلة وبالتحديد الاقترانات المتصلة من النمط (co-(-continuous) ويكون الاقتران من النمط (co-(-continuous) إذا كانت الصورة العكسية للمجموعات المفتوحة (open) �هي من النمط ((-closed). علاوة على ذلك دراسة الاقترانات من النمط�(contra-continuous), ((-continuous) ومناقشة عدد من الأوصاف للاقترانات من النمط (co-(-continuous) كذلك مناقشة بعض الإنشاءات والتطبيقات عن طريق الاقترانات المتصلة من النمط (co-(-continuous). 


Abstract


 The aim of this paper is to introduce and study a relatively new class of continuous maps, namely co-� EMBED Equation.3  ���-continuous maps where a map is co-� EMBED Equation.3  ���-continuous if the inverse image of every open subset is � EMBED Equation.3  ���-closed. Moreover, connections to contra-continuity and� EMBED Equation.3  ���-continuity are discussed, several characterizations of co-� EMBED Equation.3  ���-continuity are provided and some constructions and applications via co-� EMBED Equation.3  ���-continuity are discussed.
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