On Decomposition Method and PN- Spaces ………....… A. Tallafha & W. Shatanawi

On Decomposition Method And PN-Spaces 

Received: 16/12/2003                                       Accepted: 15/3/2004
A. Tallafha* & W. Shatanawi** 

1.  Introductions.

      Let H be a Frèchet space with an absolute basis 
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, and  be the fundamental system of semi-norms for H. Then H is isomorphic to a Köthe Space λ(A) where the Köthe set A={
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}. From Dynin-Mitiagin basis theorem, we conclude that every basis in a nuclear Fréchet space is absolute, thus we can identify nuclear Frèchet spaces with nuclear Köthe spaces. Therefore the attraction of sequence spaces to a large number of analysists is understandable.
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      In set theory it is known that if a set A is equipotent to a subset of a set B and B in turn is equipotent to a subset of A, then A and B are equipotent. By imitating this fact, we ask the following question: If E and F are two locally convex spaces, E is isomorphic to a complemented subspace F of E and F is isomorphic to a complemented subspace of E, then under what conditions on E and F to be E isomorphic to F. Among the pioneer workers in this are M-Valdivia and D-Vogt. They proved what are called later Valdivia Decomposition method [14] and Vogt decomposition method [15].

      Vogt decomposition method is one of the main tools to show whether a certain nuclear Frèchet space is isomorphic to a stable power series space of infinite type. In [1], Aytune, Krone and Terzioğlu defined what they called a local imbedding and they modified Vogt decomoposition method. Later on, in [12], Terzioğlu gave a modification of Aytune, Krone and Terzioğlu ‘s result. In [9], Tallafha generalized the result of Terzioğlu. Also in [10], Tallafha and Jarrah gave another generalization. Thereafter in [8], Shatanawi modified Terzioğlu’s result.

      In this paper, we shall generalize the result obtained by Tallafha in [9], and the result obtained by Shatanawi in [8].

2. Basic Concepts.

      A set A of sequences of non-negative real numbers is called a Köthe set if it satisfies the following conditions:

1. For each pair of elements a, b
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A with an = O(cn) and bn =O(cn) where an= O(cn) means that there is a 
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2. For every integer 
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Given a Köthe set A, the space of all sequences x=(xn) such that 
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      for all a 
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A is called the Köthe space generated by A, denoted by λ(A). The semi-norms {pa : a
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A} define a locally convex Hausdorf topology on λ(A), called the normal topology of  λ(A).

Definition 1.1 [11] A Köthe set P will be called a power set of infinite type if it satisfies the following conditions:

1. For each a 
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P, 0 < an ≤ an+1  for all n.

2. For each a 
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      A Köthe space of the form λ(P) where P is a power set of infinite type is called a 
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- space or a smooth sequence space of infinite type.
Definition 1.2 [9] A Köthe space λ(P)  will be called a PN-space if  each 
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Remark. Every 
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     A Köthe space λ(A) is called stable if λ(A)
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λ(A). The stability of a nuclear 
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P such that a2n = O(bn)[13].

Definition 1.2 [1] A continuous linear map i from a stable nuclear 
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-space λ(P) into a locally convex space E is called a local imbedding if there is a sequence 
[image: image28.wmf])

(

n

s

s

=
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      For two sequences x = (xn) and y = (yn) we will denote the sequence (x1, y1, x2, y2, …) by x* y. If K and L are Köthe sets, then
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is also a Köthe set [13].

Definition 1.3 Let x1, x2, …, xn be elements of a linear space E.

The subspace sp{x1,x2, …, xn} of  E is defined by

sp{x1, x2, …, xn} = 
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Definition 1.4 A sequence (xn) in a locally convex space E is said to be a basic sequence if it is basis for 
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      The following well known result is essential for our subsequent arguments.

Theorem 1.1 (Grothendieck-Pietsch criterion for nuclearity) A Köthe space λ(A) is nuclear if and only if for every a 
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 A, there is b 
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      Our goal in this paper is to generalize the following result 

Theorem 2.2 [9] Let 
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(A) be a PN-space where the Köthe set A satisfies the following conditions: For each a
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. If there is a local imbedding map i from λ(A) into a locally convex space E and if E is isomorphic to a closed subspace of λ(A), then E has a complemented subspace isomorphic to λ(A) 

2
 Main Results.

    It is worth starting this section by discussing the nuclearity of the sequence space of the form 
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Proposition 3.1 The Köthe space 
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    One can easily see the following proposition.

Proposition 3.2 The sequence space 
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    By defining a map h from 
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Proposition 3.3 The sequence space 
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    By the definition of stability and the aid of Proposition 3.3, we have the following result.

Corollary 3.1 If 
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    To proceed in our work and to achieve our goals, we introduce the following definition.

Definition 3.1 A Köthe set A is called a Super Köthe set if for each 
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Theorem 2.1 Suppose that λ(A) is a nuclear Köthe space and A is a super Köthe set. If there is a local imbedding map j from λ(A*A) into a locally convex space E and if E is isomorphic to a closed subspace of λ(A), then E has a complemented subspace isomorphic to λ(A).

Proof. Since j is a local imbedding, there are a sequence 
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      Since every subspace of nuclear is nuclear and nuclearity is topological property, E is nuclear (see Pietsch [6]). Also, since E is nuclear, p is given by a semi-inner product 
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      We will construct a basic sequence (gn) in j(λ(A
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3. p(gn) = 1

      where (en) is the canonical basis of λ(A
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Let 
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Since A is a super Köthe set, there is 
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      By nuclearity of λ(A) and inequality (2), there are 
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      defines a continuous semi norm on G. To show that J is closed, let ua be any zero neighborhood of 
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Definition 2.2 [8] A continuous linear map j from λ(B
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      Applying Theorem 3.1 we have the following result:

Corollary 3.2 [8] Suppose that 
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      It is an easy task to show that if 
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, and A is a super Köthe set. So we have the following corollary.

Corollary 3.3 [9] Let 
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      We close our paper by giving an example of a sequence space 
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Example 3.1 Let 
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1. A is a super Köthe set .
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Proof. It is clear that A is a super Köthe set . To prove that 
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      To this end, one can prove 4 by similar arguments in proving 
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ملخص


      طريقة تجزئة فوجت هي إحدى الأدوات الرئيسية لبرهان أن فضاء فريشييت النووي مكافئ لفضاء مستقر من نوع اللانهائي. ترزي أوجلو عمم طريقة تجزئة فوجت. طلافحة عرف فضاء بي. أن وأثبت نتيجة ترزي أوجلو على فضاء بي.أن. مؤخرا شطناوي أعطى تعديل جديد على نتيجة ترزي أوجلو.


Abstract


|      Vogt decomposition method is one of the main tools to show whether a certain nuclear Frèchet space is isomorphic to a stable power series space of infinite type. Terzioğlu generalized the Vogt decomposition method. Tallafha defined what he called a PN-space and he proved the Terzioğlu’s result on PN-space. Later on Shatanawi gave a new modification for Terzioğlu result. In this paper we shall generalize Tallafha and Shatanawi’s results.
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