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1 Introduction

      Let 
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 be a topological space (or simply, a space). A subset 
[image: image2.wmf]X

A

Í

 is called semi-open (simply, SO) if there exists an open set 
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 denotes the closure of O in X. Clearly A is a semi-open set if and only if 
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. A complement of a semi-open set is called semi-closed (simply, SC). A is called preopen (simply, PO) if 
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 for some closed subset F. Complements of regular-open sets are called regular-closed (simply, RC). Clearly A is regular-closed if and only if 
[image: image10.wmf]o

A

A

=

 or if 
[image: image11.wmf]O

A

=

 for some open subset O. A is called 
[image: image12.wmf]open

-

a

 if 
[image: image13.wmf]o

o

A

A

=
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 is an RC set. The collection of all SO (resp., RO, RC, PO and 
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. A space 
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 is called extremally disconnected (simply e.d.) if 
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 is open for every open subset U, which is equivalent to say that every disjoint open subsets, have disjoint closures.

      In [6], a space 
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 is called S-closed if every SO cover of X (i.e. every cover of X by SO subsets) contains a finite subfamily whose union is dense in X. In [2], 
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 is called I-compact if every RC cover of X (i.e. every cover of X by RC subsets) contains a finite subfamily whose interiors cover X. In [3], 
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 is called countably S-closed if every countable RC cover of X contains a finite subcover for X. In [1], 
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 is called countably I-compact if every countable RC cover of X contains a finite subfamily whose interiors cover X. Also in [3], 
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 is called feebly compact if every countable open cover of X contains a finite subfamily whose union is dense in X.

      By 
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, we mean the set of all natural numbers. Recall that a space 
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 is compact if and only if every open cover of X has a finite open refinement that covers X, see for example [4]. Thus we have the following result:

Lemma 1 A space 
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 is countably S-closed if and only if every RC countable cover of X has a finite RC refinement that covers X. 
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[image: image36.wmf]}

,...,

2

,

1

:

{

k

i

B

i

=

=

B

 that covers X. Thus for every i=1,2,...,k, 
[image: image37.wmf]A

Î

Í

i

i

A

B

 and as 
[image: image38.wmf]B

 covers X, 
[image: image39.wmf]}

,...,

2

,

1

:

{

k

i

A

i

=

 is a finite subcover for X.

      The converse is obvious. ■

      Another immediate result is next.

Lemma 2 A space 
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 is countably I-compact if and only if every countable RC cover of X has a finite RC refinement 
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Proof. Follows from the fact that every finite collection is locally finite.  ■

      Analogous to [1,2,3,6], we study several classes of paracompact like spaces, namely: S-paracompact, countably S-paracompact, countably I-paracompact and feebly paracompact spaces and characterize them. Our main goal is to focus on countably I-paracompact spaces and show that a space is countably I-paracompact if and only if it is countably S-paracompact and extremally disconnected. Moreover, we study maps of countably I-paracompact spaces.

2 Countably I-paracompact spaces

      We begin this section by characterizing S-paracompact spaces for better understanding of countably I-paracompact spaces.

Definition 1 A space 
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Theorem 1 A space 
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      Next, countably S-paracompactness, countably I-paracompactness and feebly paracompactness are introduced.

Definition 2 A space 
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      Next, we show that every countably S-paracompact space is feebly paracompact.

Lemma 3 A countably S-paracompact space 
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      The following result is a direct consequence of Lemma 1 and the fact that every finite collection is locally finite.

Corollary 1 A countably S-compact space that is 
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      The following result follows directly from Lemma 2.

Corollary 2 A countably I-compact space that is 
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 is countably I-paracompact.

      Next, we prove one of our main results that will be a useful tool throughout this paper. In this result, we give a decomposition of countably I-paracompact spaces in terms of countably S-paracompact spaces.

Theorem 2 A space 
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      Conversely, let 
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      For the proof of the following Lemma, see for example [4,pp.246].

Lemma 4 Let 
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      Using Lemma 4, we can show that in an e.d. space, feebly paracompactness is stronger than countably S-paracompactness.

Lemma 5 Every feebly paracompact e.d. space is countably S-paracompact.

Proof. Let 
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      A stronger result than that in Theorem 2 is given next.

Theorem 3 In an e.d. space 
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Therefore, X is feebly paracompact.
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: As X is feebly paracompact and e.d., by Lemma 5, X is countably S-paracompact and by Theorem 2, it is countably I-paracompact ■

      The following Lemma follows easily by definitions.

Lemma 6 (1) A subset A of a space X is semipreopen if and only if 
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Theorem 4 For a space 
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3 On constructions of countably I-paracompact spaces
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Lemma 7 [3] e.d. is a semiregular property.

Theorem 5 Countably S-Paracompact is a semiregular property.
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      Combining Lemma 7 and Theorem 5 together with Theorem 3, we obtain the following result:

Corollary 3 Countably I-paracompactness is a semiregular property.

Lemma 8 [3] e.d. is a semiopen hereditary property.

      The proof of the following result is similar to that of Proposition 2.9 in [3] and thus omitted.
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      Since every RO-set and every RC-set is an RSO-set, we have the following result:
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4 Maps of countably I-paracompact spaces
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      Combining Lemma 11 together with Theorem 3, we obtain the following result:

Theorem 7 Let 
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      By 
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, we mean the semi-closure of A. That is the smallest SC-set containing A. We next recall the following Lemma to prove our final result.

Lemma 12 (1) A map 
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      We end this section by showing that the semicontinuous almost open image of a countably I-paracompact space is countably I-paracompact. 
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Proof. Using Theorem 2, we need only show 
[image: image271.wmf](

,

)

Y

Y

Á

 is countably S-paracompact and e.d.

      To show 
[image: image272.wmf](

,

)

Y

Y

Á

 is e.d., we show that given any two disjoint open subsets 
[image: image273.wmf]V

1

 and 
[image: image274.wmf]V

2

 of Y, 
[image: image275.wmf]V

V

1

2

Ç

=

Æ

. If 
[image: image276.wmf]V

1

 and 
[image: image277.wmf]V

2

 are two disjoint open subsets of Y, then 
[image: image278.wmf])

(

)

(

)

(

2

1

1

1

2

1

1

V

f

V

f

V

V

f

-

-

-

Ç

=

Ç

 and as f is almost open, 
[image: image279.wmf]f

V

V

f

V

f

V

-

-

-

Ç

Í

Ç

1

1

2

1

1

1

1

(

)

(

)

(

)

. As f is semicontinuous, 
[image: image280.wmf]f

V

-

1

1

(

)

 and 
[image: image281.wmf]f

V

-

1

2

(

)

 are SO-sets and thus there exist open sets U,V such that 
[image: image282.wmf]U

f

V

U

Í

Í

-

1

1

(

)

 and 
[image: image283.wmf]V

V

f

V

Í

Í

-

)

(

2

1

. Since 
[image: image284.wmf]f

V

f

V

-

-

Ç

=

Æ

1

1

1

2

(

)

(

)

, 
[image: image285.wmf]U

V

Ç

=

Æ

 and as 
[image: image286.wmf](

,

)

X

X

Á

 is e.d., 
[image: image287.wmf]U

V

Ç

=

Æ

 . Now as 
[image: image288.wmf]U

f

V

=

-

1

1

(

)

 and 
[image: image289.wmf]V

f

V

=

-

1

2

(

)

, 
[image: image290.wmf]f

V

V

f

V

f

V

-

-

-

Ç

=

Ç

=

Æ

1

1

2

1

1

1

1

(

)

(

)

(

)

. Thus as f is surjective, 
[image: image291.wmf]Æ

=

Ç

2

1

V

V

. Therefore, 
[image: image292.wmf](

,

)

Y

Y

Á

 is e.d.
[image: image293.wmf]
      Let 
[image: image294.wmf]}

:

{

À

Î

=

A

n

A

n

 be an RC cover of Y. Then since X is e.d. by Theorem 2, for all 
[image: image295.wmf]À

Î

n

 there exists 
[image: image296.wmf]V

n

Y

Î

Á

 such that 
[image: image297.wmf]n

n

V

A

=

. Now as f is almost open 


[image: image298.wmf]U

U

U

U

À

Î

-

À

Î

-

À

Î

-

À

Î

-

Í

=

Í

=

n

n

n

n

n

n

n

n

V

f

V

f

V

f

A

f

X

.

)

(

)

(

)

(

)

(

1

1

1

1


      Thus 
[image: image299.wmf]}

:

)

(

{

1

À

Î

=

A

¢

-

n

V

f

n

 is a countable RC cover of X and as X is countably S-paracompact, there exists an RC locally finite refinement 
[image: image300.wmf]B

¢

 of 
[image: image301.wmf]A

¢

 that covers X. Thus 


[image: image302.wmf]U

U

À

Î

-

B

¢

Î

¢

=

¢

=

n

n

B

V

f

f

B

f

Y

).

)

(

(

)

(

1


and by Lemma 12 part (2), 
[image: image303.wmf]U

À

Î

-

=

n

n

V

f

f

Y

)

)

(

(

1

 and hence by Lemma 12 part (1), 
[image: image304.wmf]U

U

U

À

Î

À

Î

À

Î

-

=

=

=

n

n

n

n

n

n

A

V

V

f

f

Y

.

)

)

(

(

1

 Therefore, 
[image: image305.wmf]}

:

{

À

Î

=

B

n

V

n

 is an RC locally finite refinement of 
[image: image306.wmf]A

 that covers Y. Thus 
[image: image307.wmf](

,

)

Y

Y

Á

 is countably S-paracompact. ■

References

[1] Al-Nashef, B., Countably I-compact spaces, IJMMS, 26:12, 745-751, 2001.

[2] Cameron, D., Some maximal topologies which are QHD, Proc. Amer. Math. Soc., 75, no. 1, 149-156, 1979.

[3] Dlaska, K., Ergun, N. and Ganster, M., Countably S-closed spaces, Math. Slovaca, 44, no. 3, 337-348, 1994.

[4] Munkres, J., Topology a first course , Prentice-Hall inc., New Jersey, 1975.

[5] Sivaraj, D., A note on S-closed spaces, Acta Math. Hungar., 44, no. 3-4, 207-213, 1984.

[6] Thompson, T., S-closed spaces, Proc. Amer. Math. Soc., 60, 335-338, 1976.

[7] Thompson, T., Semicontinuous and irresolute images of S-closed spaces, Proc. Amer. Math. Soc., 66, no. 2, 359-362, 1977. 
ملخص


      قام الباحث في المرجع [1] بدراسة ما يسمى بالفضاءات المتراصة المعدودة من الفئة I (Countably I –compact spaces) حيث أعطى عدة أوصاف لهذة الفضاءات. هذا البحث-مشابة لما في المرجع [1]- حيث نقدم مفهوم الفضاءات شبة المتراصة المعدودة من الفئة I (Countably I – paracompact spaces) وهي الفضاءات� EMBED Equation.2  ��� التي تكون � EMBED Equation.2  ��� وأي غطاء معدود مكون من مجموعات منتظمة الاغلاق (Regular closed) ل X يملك تنقية محلية (Local refinement) مكونة من مجموعات منتظمة الاغلاق دواخلها تغطي X . نبين أيضا أن الفضاء يكون شبة متراص معدود من الفئة I أذا وفقط أذا كان شبة معدود من الفئة S ومنفصلا نهائيا (Extremally disconnected). ثم نعطي عدة أوصاف لهذه الفضاءات ونلقي الضوء على الاقترانات بين هذة الفضاءات.


Abstract


      In [1] the concept of countably I-compact spaces was introduced. A decomposition and several characterizations of this class of spaces were also given. In this paper-analogous to [1]- we introduce the relatively new notion of countably I-paracompact space as the space � EMBED Equation.3  ��� that is � EMBED Equation.3  ��� and every countable cover by regular closed subsets of X has a countable locally finite refinement by regular closed subsets whose interiors cover X. We prove that a space is countably I-paracompact if and only if it is countably S-paracompact and extremally disconnected. Several characterizations of countably I-paracompactness are also given. Moreover, we study maps of countably I-paracompact spaces.


Keywords: Countably I-paracompact, Regular closed set, Cover.
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