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Introduction
      Mixed boundary value problems of mathematical physics equations have been introduced to discuss dual series or Dual Integral Equations (
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) [1, 5]. In this paper an example is given, as a practical application, to illustrate how to reduce a solution of heat equation  in  cylindrical  coordinates  under  discontinuous  mixed boundary  conditions  of  the third  kind  which act on a surface of infinite plate to
	* 
	Assistant Professor, Department of Mathematics, Yarmouk University, Jordan.


some type of (
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). Solutions of these (
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) are discussed by Noble [3].

      Note that there are various ways to deal with (
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) such as substitution method (method of discontinuous integrals), generalized Mehler-Fock inversion theorem, generalized associated Mehler-Fock inversion theorem [4,5]. However, in comparison with the above mentioned methods, the method discussed in this paper which is based on using the inverse Hankel transform allows us to get the general solution in a more easy and effective way when mixed boundary conditions of the third kind are given in different types of coordinate systems such as spherical and biospherical coordinates. Finally in all cases the problem of solving (
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) reduces to that of solving an integral equation of second kind which can be solved numerically.

Now consider the general form of 
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      where 
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Equation (2) can be written in the form
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where ِ
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is an unknown function defined on (
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      Applying the inverse integral transform for (3) under the assumption that the inversion exist, we have
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Now substituting (4) into (1), and changing the order of integration, we obtain
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Where the free term 
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 and the kernel 
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 have the following form
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      We assume the solution of the integral equation (5) always exist, and this requires
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Formulation of the Problem

      Suppose that it is required to determine a harmonic function 
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 satisfies two dimensional steady state heat conduction problem with no heat generation in axially symmetrical coordinates for a plate of height 
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, under the following boundary conditions:
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On a surface 
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, a discontinuous mixed boundary conditions of the third kind are given
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On a surface 
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 a homogeneous unmixed boundary condition is given
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where
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 is the heat exchange coefficients, 
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 is the heat conductivity coefficients, [9, 10] and 
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 is the radius of a circle on 
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. Inside the circle the heat exchange is different from the heat exchange outside the circle 
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Using separation of variables and (6) the general solution can be expressed in the following form
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where 
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 is Bessel function of the first kind of order zero and 
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 is the separation parameter.
Applying the mixed boundary conditions (7) and (8) to the general solution (10) we get the following 
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 to determine the unknown function 
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Where 
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Equation (12) can be written in the following form
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      Now by assuming that the function ِ
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 are defined as it is mean value at each point of discontinuity, we are able to apply the inverse Hankel transform on (13) to obtain the following expression to determine the function 
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      Substituting (14) into (11) and interchanging the order of integration, we will have an integral equation of second kind to determine the unknown function ِ
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with the kernel
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and the free term
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Multiplying equation (15) by 
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where
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formula (17) exist if satisfies the condition
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for some choices 
[image: image69.wmf]i

H

R

 

,

 and 
[image: image70.wmf]h

. A solution of the Fredholm integral equation (17) exist if 
[image: image71.wmf],

1

   

and

   

)

(

0

<

¥

<

ò

k

R

B

dr

r

F

 where


[image: image72.wmf]ò

ò

=

R

R

k

drdy

y

r

K

B

0

0

2

2

.

)

,

(


Numerical methods suitable to solve (17) are given in [6,7] for specific values of a given 
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As a special case when 
[image: image77.wmf]¥

®

h

 (half-space),
[image: image78.wmf]0

)

(

  

),

(

)

(

2

1

=

=

r

f

r

f

r

f

, the 
[image: image79.wmf]S

DIE

 have the form


[image: image80.wmf]ò

¥

<

<

=

-

0

0

0

         

),

(

)

(

)

(

))

(

1

(

R

r

r

f

dp

pr

J

p

C

p

g

(18)


[image: image81.wmf]ò

¥

¥

<

<

=

0

0

R

         

,

0

)

(

)

(

r

dp

pr

J

p

C

                 (19)

where
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The solution of the last 
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where 
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 is an unknown function, it is assumed that it is continuous . Substituting (20) into (19) and (18), equation (19) vanish and we will have the following Fredholm integral equation from (18)
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where
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      The problem has different physical interpretations when some constants 
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, a heat exchange is given or conversely, inside the circle heat exchange and outside a heat flux or function is given, in these cases the solution of the integral equations always exists.

      Finally the same procedure can be repeated for nonsymmetrical cylindrical coordinates, where a Bessel function in (10) is replaced by 
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) contain trigonometric functions and the Hankel transform can be replaced by sine or cosine Fourier transforms.
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ملخص


      الهدف الأساسي من هذا البحث هو توضيح كيف يتم تحويل حل معادلة الحرارة في الإحداثيات الاسطوانية تحت شروط حدية مختلطة غير متصلة من النوع الثالث التي تؤثر على سطح شريحة غير منتهية لبعض المعادلات التكاملية الثنائية. قدمنا طريقة جديدة التي بدورها تعتمد على استخدام تحويل هانكل العكسي المرتبط بالمعادلات التكاملية الثنائية عند إعطاء شروط حدية مختلطة من النوع الثالث لأنواع مختلفة من أنظمة الإحداثيات. كما هو معروف سابقاً، تحويل هانكل العكسي لم يستخدم لحل مثل هذا النوع من المسائل.


Abstract


      The main purpose of this paper is to illustrate how to reduce a solution of heat equation in cylindrical coordinates under discontinuous mixed boundary conditions of the third kind which act on the surface of infinite plate to some type of dual integral equations. We introduce a new approach which depends on using the inverse Hankel transform to deal with these dual integral equations when a mixed boundary conditions of the third kind are given for different types of coordinate systems. As far as we know, the inverse Hankel transform has not been used to deal with such kind of problems.
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