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1.Introduction.

      The concept of bitopological spaces was initiated by Kelly (1963). A set X equipped with two topologies (1 and (2 is called a bitopological space and will be denoted by (X,(1,(2). A cover Ũ of the space (X,(1,(2) is called p-open cover ( Fletcher et al., 1969) if Ũ  ( (1((2 and Ũ contains at least one non-empty member of (1 and at least one non-empty member of (2. A space (X,(1,(2) is said to be pairwise (p-compact) ( Fletcher et al., 1969) if every p-open cover of X has a finite subcover. A subset A of (X,() is called semi-open (Levine, 1963) if A ( Cl(Int A). The complement of a semi-open set is called semi-closed ( Biswas, 1970). The semi-interior of A, denoted by sInt(A), is the union of all semi-open subsets of A while the semi-closure of A, denoted by sCl(A), is the intersection of all semi-closed
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supersets of A. It is well known that sInt(A) = A ( Cl(Int A) and sCl(A) = A ( Int(Cl A). A subset A is said to be sg-open (Bhattacharya et al., 1987) if every semi-closed subset of A is included in the semi-interior of A. The complement of a sg-open set is called sg-closed. The family of all sg-open sets in (X,() is denoted by SG((). Semi-generalized compact (briefly, sg-compact) spaces were introduced by Caldas (1995). It is also studied by Devi, Balachandran and Maki (1995). A topological space (X,() is called sg-compact (Caldas, 1995) if every cover of X by sg-open sets has a finite subcover. If A is a subset of (X,(1,(2) then the topologies on A inherited from (1 and (2 will be denoted by (1A and (2A respectively.

2.Pairwise sg-compact and pairwise sg-Lindelöf spaces.

Definition 2.1: A family Ã of subsets of a space (X,(1,(2) is called (1(2-sg-open if Ã ( SG((1) ( SG((2). If in addition Ã ( SG((1) ( {(} and Ã ( SG((2) ( {(}, then Ã is called pairwise sg-open (simply p-sg-open).
Definition 2.2: A s​pace (X,(1,(2) is said to be pairwise sg-compact, simply p-sg-compact ( resp. pairwise M-sg-compact, simply p-M-sg-compact) if each p-sg- ( resp. (1(2-sg-) open cover of X has a finite subcover.

      Clearly every p-M-sg-compact space is p-sg-compact, but the converse may not be true as is shown by the following example.

Example 2.3: Let X = R (the set of real numbers), (1 = the discrete topology and (2 = the cofinite topology. Then (X, (1,(2) is p-sg-compact but not p-M-sg-compact since {{x} : x(X } is a (1(2-sg-open cover of X which has no finite subcover.

Definition 2.4: A space (X,(1,(2) is called pairwise sg-Lindelöf, simply p-sg-Lindelöf if each p-sg-open cover of X has a countable subcover.

      It is obvious that every p-sg-compact space is p-sg-Lindelöf, but the converse may not be true as is shown by the following example.

Example 2.5: Let X = R ( the set of real numbers ) and (1,(2 be the topologies on X generated by the bases ℬ1,ℬ2 respectively, where  

ℬ1 = {{x} : x ( 0} ( {(-(,0) – F : F is any finite set }, and 

ℬ2 = {{x} : x ( 0} ( {[0,() – F : F is any finite set }.

Let X* = Q ( the set of rational numbers).

(1* = { U ( Q : U ( (1} and 

(2* = { V ( Q : V ( (2}.

      Then (X*,(1*,(2*) is p-sg-Lindelöf but it is not p-sg-compact, since the p-sg-open cover {{x} : x ( X*} of X* does not have a finite subcover.

The following three Theorems are easily obtained from the definitions.

Theorem 2.6: A space (X,(1,(2) is p-M-sg-compact if and only if it is p-sg-compact and (X,(1), (X,(2) are sg-compact.

      Proof:() Let (X,(1,(2) be p-M-sg-compact, then it is p-sg-compact. To show that (X,(1) is sg-compact space, let Ũ be a cover of X by sg-open sets in (1 then Ũ ( SG((1) ( SG((1) ( SG((2). So Ũ is a (1(2-sg-open cover of the p-M-sg-compact X. Then Ũ has a finite subcover. So (X,(1) is sg-compact. Similarly (X,(2) is sg-compact.

      () Let (X,(1,(2) be p-sg-compact space and (X,(1), (X,(2) are sg-compact spaces. To show that (X,(1,(2) is p-M-sg-compact space, let Ũ be a (1(2-sg-open cover of X. Then Ũ  ( SG((1) ( SG((2). Now we have three cases:

Case 1: If there exist U1 and U2 in Ũ such that U1( SG((1) and U2( SG((2) then Ũ is a p-sg-open cover of X. Since X is p-sg-compact, Ũ has a finite subcover.

Case 2: If Ũ ( SG((1) then Ũ has a finite subcover since (X,(1) is sg-compact.

Case 3: If Ũ ( SG((2) then Ũ has a finite subcover since (X,(2) is sg-compact.

      So in each case Ũ has a finite subcover. Then (X,(1,(2) p-sg-compact.

Theorem 2.7: A space (X,(1,(2) is p-M-sg-compact if and only if every (1(2-sg-closed family of subsets of X having the finite intersection property, has a non-empty intersection.

Theorem 2.8: A space (X,(1,(2) is p-sg-compact if and only if every pairwise sg-closed family of subsets of X having the finite intersection property, has a non-empty intersection.

Definition 2.9:(Caldas, 1995): A subset A of a topological space (X,() is said to be sg-compact (resp. sg-Lindelöf) relative to (X,() if every cover of A by sg-open subsets of (X,() has a finite (resp. countable) subcover.

Definition 2.10: A subset A of a space (X,(1,(2) is said to be p-sg-compact (resp. p-sg-Lindelöf ) relative to (X,(1,(2) if every p-sg-open cover of A has a finite (resp. countable) subcover, where the sg-open sets belong to SG((1) ( SG((2).

Theorem 2.11: A space (X,(1,(2) is p-sg-compact if and only if each proper (i-sg-closed subset of (X,(1,(2) is sg-compact relative to (X,(j), where i,j=1,2; i(j.

Proof: () Let C be any proper (i-sg-closed subset of a p-sg-compact space (X,(1,(2). Then X-C is a non-empty (i-sg-open set. Let { U(: ((( } be a cover of C by (j-sg-open sets, then { U(: ((( } ({X-C} is a p-sg-open cover of X and hence it has a finite subcover, say { U(i: i=1,2,…,n } ( { X-C }. So X = ({ U(i: i=1,2,…,n} ( { X-C }. Therefore, we have C ( ({U(i: i=1,2,…,n }. This shows that C is sg-compact relative to (X,(j).

      ( ) Let {U(: (((} be an infinite p-sg-open cover of X. Let (i = {((( : U((SG((i)} for i=1,2. Then two cases arise :

Case 1: If ({U(: (((j} = X, then choose (0((i such that U(0 ( (. Since { U(: (((j } is a (j-sg-open cover of the proper (i-sg-closed subset X- U(0 therefore it has a finite subcover, say { U(: (((j′ }. This shows that (X,(1,(2) is p-sg-compact.

Case 2: If ({ U(: (((j } ( X then C = X - ({ U(: (((j } is a proper (j-sg-closed subset of X, and C ( ({ U(: (((i }. Hence there is a finite subcover of { U(: (((i }, say { U(: (((i′ }. Thus C ( ({U(: (((i′}.

      Also we have

X - ( U(: (((i′} ( X – C = ({U(: (((j}

      Thus we obtain

      X = ({U(: (((i′ ( (j′} which means that (X,(1,(2) is p-sg-compact.

      In a similar way we can prove the following Theorem.

Theorem 2.12: A space (X,(1,(2) is p-sg-Lindelöf if and only if each proper (i-sg-closed subset of (X,(1,(2) is sg-Lindelöf relative to (X,(j) where i,j=1,2;i(j.

Theorem 2.13: A space (X,(1,(2) is p-sg-compact if and only if every proper (i-sg-closed subset of X is p-sg-compact relative to (X,(1,(2) for i=1,2.

Proof: () Let C be a proper  (i-sg-closed subset of a p-sg-compact space (X,(1,(2). Let {U(: (((} be a p-sg-open cover of C, where  U(( SG((1) ( SG((2) for each  (((. Then {U(: (((}({ X-C } is a p-sg-open cover of X. Since (X,(1,(2) is p-sg-compact, we have X = ({ U(: (((′ } ( { X-C } for some finite subset (′ of (. This means that C ( ({U(: (((′}. Therefore, C is p-sg-compact relative to (X,(1,(2).

      ( ) Let Ũ = {U(: (((} be an infinite p-sg-open cover of X. Then at least Ũ ( SG((1) or Ũ ( SG((2) is infinite. Without loss of generality assume that Ũ ( SG((1) is infinite. Choose (0(( such that      ( (U(0 ( X and U(0( Ũ ( SG((1). Then {U(: (((-{(0}} is p-sg-open cover of X - U(0. Since X - U(0 is a proper (i-sg-closed subset of X, we have X - U(0 ( ( {U(: (((′} for some finite subset (′ of  (. Therefore, we have X = ( {U(: (((′({(0}}. Thus (X,(1,(2) is p-sg-compact.

      In a similar way we can prove the following Theorem.

Theorem 2.14: A space (X,(1,(2) is p-sg-Lindelöf if and only if every proper (i-sg-closed subset of X is p-sg-Lindelöf relative to (X,(1,(2) for i=1,2.

Definition 2.15: A subset C of a space (X,(1,(2) is called p-sg-F(-set if it is the union of countably many sets each of them is (1-sg-closed or (2-sg-closed set.

Theorem 2.16: If (X,(1,(2) is p-sg-Lindelöf then every p-sg-F(-subset of X is p-sg-Lindelöf relative to (X,(1,(2).

Proof: Let C = ({ Ci :i=1,2,…} be a p-sg-F(-subset of X and { U(: ((( } be a p-sg-open cover of C, where U((SG((1) ( SG((2) for each (((. Then {U(: ((( } is a p-sg-open cover of Ci for each i. But Ci is p-sg- Lindelöf relative to (X,(1,(2). So for each i, we have Ci ( ({U(: (((i′} for some countable subset (i′ of (. Now {U(: ((({(i′: i=1,2,…}} is a countable subcover of { U(: ((( } for C. This shows that C is p-sg- Lindelöf relative to (X,(1,(2).

Theorem 2.17: Every subset of a space (X,(1,(2) is p-sg-Lindelöf relative to (X,(1,(2) if and only if every subset of X, which is a union of a (1-sg-open and a (2-sg-open set, is p-sg-Lindelöf relative to (X,(1,(2).

Proof: () The proof is obvious and thus omitted.

      ( ) Let Y be a subset of (X,(1,(2) and let Ũ be a p-sg-open cover of Y, say Ũ = { U(: ((( } ( { V(: ((( }, where U((SG((1) for all ((( and V((SG((2) for all (((. Now Y ( (Ũ. Let V = [({U(: ((( }]( [({ V(: ((( }. Then V is the union of a (1-sg-open set and a (2-sg-open set. Hence V is p-sg-Lindelöf relative to (X,(1,(2) and Ũ is a p-sg-open cover of V. Thus Ũ has a countable subcover Ũ′. Then V ( ( Ũ′ and therefore, Y ( V ( ( Ũ′ so Ũ′ is a countable subcover of Ũ for Y. Then Y is p-sg-Lindelöf relative to (X,(1,(2).

3. Pairwise sg-continuous functions.

      Recall that a subset A of a topological space (X,() is called (-open ( Veličko, 1968) if A is the union of regular open sets where a subset V of (X,() is called regular open if V = Int ( Cl V).

Lemma 3.1 (J. Dontchev and M. Ganster, 1998): If A ( B ( (X,() such that B is (-open in X and A is sg-open in B, then A is sg-open in X.

Theorem 3.2: If B is (-open in (X,(1) and (X,(2), where (X,(1,(2) is p-sg-compact then (B,(1B,(2B) is p-sg-compact.

Proof: Let Ũ = {U(: (((} be a p-sg-open cover of (B,(1B,(2B). Then by Lemma 3.1, Ũ along with X-B forms a p-sg-open cover of X. since X is p-sg-compact, there exists a finite (0 ( ( such that {U(: (((0} covers B.

      Now, recall that a function f: X ( Y is said to be sg-continuous (resp. sg-irresolute) (Caldas, 1995) if, for every closed (resp. sg-closed) subset F of Y the inverse image f-1(F) is sg-closed in X.

      By Caldas (1995), it is proved that a function f: X ( Y is sg-continuous if and only if the inverse image of every open set in Y is sg-open in X.

Definition 3.3: A function f : (X,(1,(2) ( (Y,(1,(2) is called p-sg-continuous ( resp. p-sg-irresolute ) if,  f : (X,(1) ( (Y,(1) and f : (X,(2) ( (Y,(2) are sg-continuous ( resp. sg-irresolute ) functions.

Theorem 3.4: A p-sg-continuous image of a p-sg-compact space is p-compact.

Proof: Let f : (X,(1,(2) ( (Y,(1,(2) be a p-sg-continuous function from a p-sg-compact space X onto a bitopological space Y. Let {V(: (((} be a p-open cover of Y. Then Ũ = { f-1(V(): ((( } is a p-sg-open cover of X. Since X is p-sg-compact Ũ has a finite subcover say, Ũ′ =       {f-1(V(1), … , f-1(V(n)}. Since f is onto {V(1, … , V(n} is a cover of Y and hence Y is p-compact.

Theorem 3.5: If f : X ( Y is p-sg-irresolute and surjective function and X is p-sg-compact space then Y is p-sg-compact.

Proof:  By the same technique used in proving the previous theorem.
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ملخص


      في هذا البحث عرفنا مفهومي التراص شبه المعمم وليندلوف شبه المعمم في الفضاءات التوبولوجية الثنائية وعرضنا بعض الخصائص لهذين المفهومين ثم درسنا العلاقة بين هذين المفهومين الجديدين وبعض المفاهيم الغطائية الاخرى فى الفضاءات التوبولوجية الثنائية وفي نهاية هذا البحث درسنا مفهوم الاقترانات المتصلة شبه المعممة. 


Abstract


      Generalizing the concepts of sg-compact spaces and sg-Lindelöf spaces to bitopological spaces we introduce the concepts of pairwise sg-compact spaces and pairwise sg-Lindelöf spaces. Interrelationships between these new concepts and other pairwise covering axioms are established. We also define and study paiwise sg-continuous functions.
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