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0. Introduction

      Let G be a group with identity e and R be a commutative ring with unity 1. Then R is a G-graded ring if there exist additive subgroups Rg of R indexed by the elements g
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G such that  and RgRh
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Rgh for all g, h 
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G. We denote for this by (R,G), and we consider supp(R,G)={g
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0}. The elements of Rg are called homogeneous of degree g. If x
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R, then x can be written uniquely as 
[image: image8.wmf]å

Î

G

g

g

x

 where xg is the component of x in Rg. Also, we write h(R) =
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      Let I be an ideal of R. Then I is a graded ideal of (R,G) if I=
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 and hence I is a graded ideal of (R, G) if 
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      In this paper we follow up the work done in [1,3,7] to give more properties about graded radical and graded Jacobson radical. Moreover, we will give some topological properties of the topological space G-spec(R). 
1. Graded Prime and Graded Maximal Ideals

      In this section we give some basic definitions and facts concerning graded prime and graded maximal ideals which are necessary in this paper.

Definition 1.1 [7]. Let R be a G-graded ring and let I be a graded ideal of (R,G). Then 

(1)
I is a graded maximal ideal (in abbreviation “G-maximal ideal”) if I
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R and there is no graded ideal J of (R,G) such that I 
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(2)
I is a graded prime ideal (in abbreviation “G-prime ideal”) if I
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R and whenever rs 
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 I, we have r 
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I or s 
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 I, where r, s 
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Proposition 1.2 [3]. Let R be a G-graded ring, and let I be a graded ideal of (R,G). Then 

(1)
I is G-maximal ideal iff r + I is a unit in 
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 for all r
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h(R)– I .

(2)
I is G-prime ideal iff r+I is not a zero divisor in 
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 for all r
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h(R)–I.

Proposition 1.3 [7]. Let R be a G-graded ring. Then (R,G) has at least one G-maximal ideal. 

Proposition 1.4 [7]. Let I be a graded ideal of (R,G) different from R. Then there exists a G-maximal ideal M of (R,G) such that I
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M. 

Definition 1.5 [3]. Let R be a G-graded ring. Then (R,G) is said to be a G-local ring if (R,G) has exactly one G-maximal ideal.

Proposition 1.6. Let R be a G-graded ring and S be a multiplicatively closed subset of R. Let P be a graded ideal of (R,G) such that (1) P
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, (2) P is maximal with respect to property (1), i.e., (in the sense that if 
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 is any graded ideal such that 
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). Then P is G-prime. 

Proof. Let a, b 
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 h(R) such that a 
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P and b 
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P. Let P1 be the ideal of R generated by P and a, and let P2 be the ideal of R generated by P and b. Then P1 and P2 are graded ideals of (R,G) containing P as a proper subset and hence P1
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P, x1, x2
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R and s1, s2 
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P, then s1s2
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P. Also, s1s2
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S which is a contrary to P
[image: image59.wmf]I

S=
[image: image60.wmf]f

. Thus ab
[image: image61.wmf]Ï

P. Therefore, P is G-prime. 

Proposition 1.7. Let R be a G-graded ring and S be a multiplicatively closed subset of R. Let I be a graded ideal of (R,G) such that S
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Proof. (Using Zorn’s Lemma ). Let 
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 be the set of graded ideals B of (R, G) such that B 
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 is non-empty. Order 
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 by inclusion , i.e., for P1, P2
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[image: image78.wmf]λ

={
[image: image79.wmf]a

P

:
[image: image80.wmf]a



 EMBED Equation.3  [image: image81.wmf]Î
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. Then clearly, P is a graded ideal of (R,G) and I 
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. Also, P is an upper bound of 
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 has at least one maximal element M in 
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 and hence by Proposition 1.6, M is graded prime ideal.

Lemma 1.8. Let R be a G-graded ring, and let a 
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 h(R). Then a is a unit of R iff a lies outside each G-maximal ideal of (R,G). 
Proof. Let a
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h(R) be a unit in R. Suppose for the contrary a
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R, which is a contradiction. 
      Conversely, let a
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h(R) such that a
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M for any G-maximal ideal M. Suppose for the contrary a is not a unit of R, then aR would be a proper graded ideal of (R,G). By Proposition 1.4, aR
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Lemma 1.9. Let R be a G-graded ring. If (R,G) is G-local, then Rh–U(R) is a subgroup of R for all h
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Proof. Let h
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G and let xh, yh 
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 Rh – U(R). By Lemma 1.8, xh, yh
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Lemma 1.10. Let R be a G-graded ring. If (R,G) is G-local, then I=
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(Rh – U(R)) is a graded ideal of (R,G). 

Proof. By Lemma 1.9, Rh – U(R) is a subgroup of R for all h
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First, Let g,h
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G. We claim that Rg(Rh–U(R))
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Step(1): take xg
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Rg and rh
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Rh –U(R). Then xgrh 
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U(R) because if xgrh is unit, then rh will be a unit which is a contradiction. Thus xgrh 
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 Rgh– U(R).
Step(2): Let 
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 Rg(Rh –U(R)). By step(1) we can see that 
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 Rgh–U(R). Therefore, Rg(Rh–U(R)) 
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 Rgh–U(R) for all g, h
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Second, we want to show that I is an ideal of R. Let g, h
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I. Therefore, I is an ideal of R.

Third, we show that I is a graded ideal. Define the graduation on I by Ih=Rh–U(R) for all h
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G. Clearly RgIh
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Proposition 1.11. Let R be a G-graded ring. Then (R,G) is G-local if the ideal generated by the set of all homogeneous non unit elements of (R,G) is a graded ideal.

Proof. Suppose (R,G) is G-local. Then the ideal generated by h(R)
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      Conversely, assume I is the graded ideal generated by h(R)
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(R–U(R)). We want to show that (R,G) is G-local. Since I is a graded ideal different from R, there is at least one G-maximal ideal M such that I
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M which implies M=I, i.e., I is a G-maximal ideal. Now suppose K is a G-maximal ideal and let x
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K
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2. Graded radical and graded Jacobson radical 

      In this section we follow up the work done in [1,3,7] to give more properties about graded radical and graded Jacobson radical. 

Definition 2.1 [4]. Let R be a G-graded ring. Then (R,G) is first strong if 
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 for all g
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for all g
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Definition 2.2 [3]. Let R be a G-graded ring. Then the graded Jacobson radical of (R,G)(in abbreviation "G-Jac(R)") is the intersection of all G-maximal ideals of (R,G). 

Definition 2.3 [2]. Let R be a G-graded ring. Then (R,G) is said to be gr-Artinian if it satisfies the descending chain condition on graded ideals of R.

Proposition 2.4 [3]. Let R be a G-graded ring, and I1,…, In be graded ideals of (R, G). Let P be a G-prime ideal such that 
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Definition 2.5 [7]. Let R be a G-graded ring, and let I be a graded ideal of (R,G). Then the graded radical of I (in abbreviation “Gr(I)”) is the set of all x 
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 R such that for each g 
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      Note that if r is a homogeneous element of (R,G), then r
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 I for some n
[image: image188.wmf]Î

N.

Definition 2.6 [7]. Let R be a G-graded ring. Then the graded nilradical of (R,G) ( in abbreviation “ G-nil(R)” ) is the set of all x
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R such that xg is a nilpotent element of R for every g in G. Clearly, a homogeneous element of R belongs to G-nil(R) iff it is a nilpotent.

Lemma 2.7 [1]. Let R = 
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 be a strongly graded ring. Then G-Jac(R)
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Re = J(Re) and G-Jac(R)= RJ(Re), where J(Re) is the Jacobson radical of the ring Re.
Proposition 2.8 [1]. Let R = 
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 be a strongly graded ring where 
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 i) G-Jac(R) 
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 J(R) and J(R)n 
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G-Jac(R).

ii) J(R) is nilpotent iff J(Re) is nilpotent. 

iii) If in addition n is invertible in Re, then J(R)=G-Jac(R). 

Lemma 2.9 [1]. Let R = 
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 be a graded ring of type Z. Then 

i) J(R) is a graded ideal of R.

ii) J(R)
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G-Jac(R).

iii) J(R)
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 J(R0).

      Let R be a G-graded ring and H be a subgroup of G. Then we let R(H) =
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. It is easy to see that R(H) is H-graded ring and if (R,G) is strong, then (R(H), H) is also strong. 

Definition 2.10 [1]. A group G is Polycyclic-by-finite if there exists a series {e} = G0 
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Proposition 2.11. Let R=
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 be a first strongly K-graded ring such that G = supp(R,K) is a polycyclic-by-finite. Then there exists a natural number t such that J(R)t 
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 G-Jac(R).

Proof. Clearly (R,G) is strongly graded ring. Let {e}= G0 
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 Gn = G be a normal series for G such that 
[image: image212.wmf]1

i

i

G

G

-

is finite or cyclic, for each i, 
[image: image213.wmf]n

i

1

£

£

. If n=1, then the series becomes {e}
[image: image214.wmf]Ì

G with 
[image: image215.wmf]}

{

e

G

 is either finite or cyclic. Since G 
[image: image216.wmf]@

 
[image: image217.wmf]}

{

e

G

 we have two cases:

Case (1): If G is finite, then by Proposition 2.8, J(R)m 
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 G-Jac(R) where
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Case (2): If G is cyclic, then by Lemma 2.9, J(R)
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 = R(H). Using Propositions 2.8 and 2.7, J(R)m 
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-Jac(R) = RJ(RH) = RJ(R(H)) = J(R(H))R. By the induction hypothesis, J(R(H))n 
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Case (2): If 
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 Z. Then by 

Lemma 2.9, J(R) 
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Proposition 2.12. Let R be a G-graded ring such that H=supp(R,G) is a subgroup of G. Then G-Jac(R) = H-Jac(R).

Proof. Clearly R is H-graded ring. Let a
[image: image255.wmf]Î

G-Jac(R). Then 
[image: image256.wmf]1

 

-

g

g

R

a

1

-

 
[image: image257.wmf]Í

 U(R) for all g 
[image: image258.wmf]Î

 G and hence 
[image: image259.wmf]1

 

-

g

g

R

a

1

-



 EMBED Equation.3  [image: image260.wmf]Í

U(R) for all g 
[image: image261.wmf]Î

H. So, a
[image: image262.wmf]Î

H-Jac(R). Therefore, G-Jac(R) 
[image: image263.wmf]Í

 H-Jac(R).

Let b
[image: image264.wmf]Î

 H-Jac(R), then 
[image: image265.wmf]1

 

-

g

g

R

b

1

-



 EMBED Equation.3  [image: image266.wmf]Í

U(R) for all g 
[image: image267.wmf]Î

 H. If g 
[image: image268.wmf]Ï

 H, then 
[image: image269.wmf]1

g

-



 EMBED Equation.3  [image: image270.wmf]Ï

 H since H is a subgroup of G and hence 
[image: image271.wmf]1

 

-

g

R

= 0 implies 
[image: image272.wmf]1

 

-

g

g

R

b

1

-

 = {1}
[image: image273.wmf]Í

 U(R). Hence for all g
[image: image274.wmf]Î

G, 
[image: image275.wmf]1

 

-

g

g

R

b

1

-



 EMBED Equation.3  [image: image276.wmf]Í

U(R). Thus b
[image: image277.wmf]Î

G-Jac(R) and hence H-Jac(R)
[image: image278.wmf]Í

G-Jac(R). Therefore, H-Jac(R) = G-Jac(R).

Corollary 2.13. Let R = 
[image: image279.wmf]s

s

R

K

 

 

Î

Å

 be a first strongly K-graded ring with G = supp(R,K) is a polycyclic-by-finite. Then there exists a natural number t such that J(R)t 
[image: image280.wmf]Í

 K-Jac(R).

Proof. Follows directly by Propositions 2.11 and 2.12.

Proposition 2.14. Let R = 
[image: image281.wmf]s

s

R

K

 

 

Î

Å

 be a first strongly K-graded ring such that G = supp(R,K) is a locally finite group. Then 

(i) G-Jac(R) 
[image: image282.wmf]Í

 J(R). 

(ii) Moreover, the group G has the property that: If for every finite subgroup H of G, the natural number 
[image: image283.wmf]H

 is invertible in Re, then G-Jac(R) = J(R).

Proof. Clearly, (R,G) is strongly graded ring. 

(i) Since G-Jac(R) = RJ(Re) = J(Re)R, then it is sufficient to prove that J(Re) 
[image: image284.wmf]Í

 J(R). Let a
[image: image285.wmf]Î

J(Re) and 
[image: image286.wmf]l



 EMBED Equation.3  [image: image287.wmf]Î

 R. We can write 
[image: image288.wmf]n

 

...

 

 

 

 

2

1

s

s

s

l

l

l

l

+

+

+

=

 where 
[image: image289.wmf]i

s

l



 EMBED Equation.3  [image: image290.wmf]Î

 
[image: image291.wmf]i

R

s

, 
[image: image292.wmf]n

i

1

£

£

. Let H be the subgroup of G generated by {
[image: image293.wmf]n

1

 

,

 

...

 

s

s

,

}. Since G is a locally finite group, H is finite. By Proposition 2.8, we have J(Re) 
[image: image294.wmf]Í

 H-Jac(R(H)) 
[image: image295.wmf]Í

 J(R(H)) and therefore, 1-
[image: image296.wmf]l

a is invertible in R(H). So, 1-
[image: image297.wmf]l

a is invertible in R and hence a
[image: image298.wmf]Î

J(R). Therefore, J(Re) 
[image: image299.wmf]Í

J(R).

(ii) By (i) G-Jac(R) 
[image: image300.wmf]Í

 J(R), so it is sufficient to show that J(R)
[image: image301.wmf]Í

 G-Jac(R). Let a 
[image: image302.wmf]Î

 J(R). Then a=
[image: image303.wmf]å

=

n

1

 

 

i

i

a

s

where
[image: image304.wmf]i

a

s



 EMBED Equation.3  [image: image305.wmf]Î



 EMBED Equation.3  [image: image306.wmf]i

R

s

, 
[image: image307.wmf]n

i

1

£

£

. Let H be the subgroup generated by {
[image: image308.wmf]n

1

 

,

 

...

 

s

s

,

}. Then H is finite and a
[image: image309.wmf]Î

R(H). Also, 
[image: image310.wmf])

)

g

H

 

 

g

g

 

H

 

 

g

R

(

 

 

R

(

 

 

R

Ï

Î

Å

Å

Å

=

=R(H)
[image: image311.wmf]Å

L, where L=
[image: image312.wmf]g

H

 

 

g

R

Ï

Å

, i.e., R(H) is a direct summand of R. 

      We show that J(R)
[image: image313.wmf]I

R(H)
[image: image314.wmf]Í

J(R(H)). Let b 
[image: image315.wmf]Î

J(R)
[image: image316.wmf]I

R(H) and let 
[image: image317.wmf]m



 EMBED Equation.3  [image: image318.wmf]Î

R(H). Then 1-
[image: image319.wmf]m

b is invertible in R, i.e., there exists z
[image: image320.wmf]Î

R such that (1-
[image: image321.wmf]m

b)z = 1. Since z
[image: image322.wmf]Î

R, z =
[image: image323.wmf]å

å

Ï

Î

+

H

 

 

g

g

H

 

 

g

g

z

 

z

. Noticing that 1-
[image: image324.wmf]m

b
[image: image325.wmf]Î

R(H) we have, (1-
[image: image326.wmf]m

b)(
[image: image327.wmf]å

å

Ï

Î

+

H

 

 

g

g

H

 

 

g

g

z

 

z

) = 1 and then (1-
[image: image328.wmf]m

b)
[image: image329.wmf] 

z

H

 

 

g

g

å

Î

+ (1-
[image: image330.wmf]m

b)
[image: image331.wmf] 

z

H

 

 

g

g

å

Ï

 = 1. So (1-
[image: image332.wmf]m

b)
[image: image333.wmf] 

z

H

 

 

g

g

å

Î

- 1=(1-
[image: image334.wmf]m

b)
[image: image335.wmf] 

z

H

 

 

g

g

å

Ï

and since (1-
[image: image336.wmf]m

b)
[image: image337.wmf] 

z

H

 

 

g

g

å

Î

- 1
[image: image338.wmf]Î

R(H) and (1-
[image: image339.wmf]m

b)
[image: image340.wmf] 

z

H

 

 

g

g

å

Ï



 EMBED Equation.3  [image: image341.wmf]Î

 L, (1-
[image: image342.wmf]m

b)
[image: image343.wmf] 

z

H

 

 

g

g

å

Î

- 1 = 0 and hence (1-
[image: image344.wmf]m

b)
[image: image345.wmf] 

z

H

 

 

g

g

å

Î

=1. But 
[image: image346.wmf] 

z

H

 

 

g

g

å

Î



 EMBED Equation.3  [image: image347.wmf]Î

R(H). Thus 1-
[image: image348.wmf]m

b is invertible in R(H) and hence b
[image: image349.wmf]Î

J(R(H)). Therefore, J(R)
[image: image350.wmf]I

R(H) 
[image: image351.wmf]Í

J(R(H)). By Proposition 2.8, J(R(H))=H-Jac(R(H)). Thus a
[image: image352.wmf]Î

H-Jac(R(H)). By Proposition 2.7, H-Jac(R(H))=R(H)J(Re) 
[image: image353.wmf]Í

 RJ(Re) = G-Jac(R) and then, a 
[image: image354.wmf]Î

 G-Jac(R), i.e. , J(R)
[image: image355.wmf]Í

G-Jac(R). Therefore, G-Jac(R) = J(R).

Corollary 2.15. Let R = 
[image: image356.wmf]s

s

R

K

 

 

Î

Å

 be a first strongly K-graded ring such that G = supp(R, K) is a locally finite group. Then 

(i)
 k-Jac(R) 
[image: image357.wmf]Í

 J(R). 

(ii) Moreover, if the group G has the property that: If for every finite subgroup H of G, the natural number 
[image: image358.wmf]H

 is invertible in Re, then K-Jac(R) = J(R).

Proof. Follows directly by Propositions 2.12 and 2.14.

We denote for GX to be the set of all G-prime ideals of (R,G).
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      The set of minimal graded prime ideals of I is denoted by G-Min(I). 
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Proposition 2.19. Let R be a G-graded ring. If (R,G) is gr-Artinian ring, then every G-prime ideal of (R,G) is a G-maximal. 
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. By Proposition 1.2, I is a G-maximal ideal of R. 

Proposition 2.20. Let R be a G-graded ring. If R is gr-Artinian ring. Then R has only finitely many G-maximal ideals. 

Proof. We can assume that R is non-trivial. Let 
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      Let M be a graded maximal ideal of (R,G). Then J=M1
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. Since Mj and M are G-maximal ideals of (R,G), we deduce that Mj=M. Hence M1, …, Mn are the only G-maximal ideals of (R, G). 

3. Topological Properties of Graded prime spectrum

      In this section, we give some topological properties of the topological space G-spec(R). For more details and properties one can look in [7,8].

Notation. Let R be a G-graded ring. For E 
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 R, let V(E) denote the set of all G-prime ideals of (R,G) containing E. Clearly, V(E)=V(h(E)) where h(E)=h(R)
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Lemma 3.1 [7]. Let R be a G-graded ring. 
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(3) V(0) = GX and V(1) =
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Proposition 3.2 [7]. Let R be a G-graded ring, and let F ={GX–V(E) : E 
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Notation. The topology in the previous proposition is called the graded prime spectrum of (R,G)(in abbreviation “graded spectra of (R,G)” and we write G-spec(R)).

      For t
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Proposition 3.3 [7]. Let R be a G-graded ring, and let r
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Proposition 3.4. Let R be a G-graded ring. Then G-spec(R) is a locally compact space. 

Proof. Let GX–V(E) be any open set in G-spec(R), and let I be the graded ideal of (R,G) generated by h(E). By Lemma 3.1,V(E) = V(I). Let P 
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Proposition 3.5. Let R be a G-graded ring. If a 
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 is closed in G-spec(R).

Corollary 3.6. Let R be a G-graded ring. Then G-spec(R) is disconnected if R contains a homogeneous idempotent element different from 0 and 1.

Proof. Suppose that there exists a 
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h(R) – {0, 1} with a2 = a. Then 
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 GX. By Proposition 3.5, 
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 is closed in G-spec(R). Therefore, G-spec(R) is disconnected.

Proposition 3.7. Let R be a G-graded ring. Then every non-empty open set in G-spec(R) is dense iff G-nil(R) is a G-prime.

Proof. Suppose that every non-empty open set in G-spec(R) is dense. Let r, s 
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 h(R) such that r, s 
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 G-nil(R) Then there exist p, q 
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GXs. Since any non-empty open set is dense, GXr
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 and hence there exists I
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G-nil(R). Therefore, G-nil(R) is a G-prime ideal.

Conversely, suppose G-nil(R) is a G-prime ideal. Let GX–V(A), GX–V(B) be any non-empty open sets. 

Claim. G-nil(R)
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(GX–V(A))
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(GX–V(B)). Suppose to the contrary that G-nil(R)
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GX–V(A) or G-nil(R) 
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GX–V(B). If G-nil(R) 
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 GX–V(A), then G-nil(R)
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V(A) and hence A
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 G-nil(R). So A
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p for all P
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GX and hence p
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V(A) for all P
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GX. Thus V(A)=GX and hence GX–V(A)=
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. This is a contradiction, i.e., G-nil(R) 
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 GX–V(A). In a similar way G-nil(R)
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GX–V(B). Thus every two non-empty open sets in G-spec(R) intersect each other which implies that any non-empty open set is dense.

Proposition 3.8. Let R be a G-graded ring. If (R,G) is gr-Artinian then G-spec(R) is a second countable space. 

Proof. By Propositions 2.19 and 2.20, GX is finite. Thus G-spec(R) is second countable. 
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ملخص


      لتكن G زمره وR حلقة تبديلية ذات عنصر وحدة مدرجة حسب G، أي أن� EMBED Equation.3  ���  المجموع المباشر لزمره جزئية Rg  تحقق الشرط Rgh � EMBED Equation.3  ��� RgRh  لجميع قيم  h,g التي تنتمي للزمره G وسنرمز لذلك بـ (R, G). سنقوم في هذا البحث بدراسة جذر جاكبسون المدرج لحلقة مدرجة وأيضاً الجذور المدرجة للمثاليات المدرجة ضمن (R, G). كذلك سنقوم بإعطاء بعض الخصائص التبولوجية للأطياف ضمن (R, G).


Abstract


      Let G be a group and R be a commutative G-graded ring with unity 1, i.e., � EMBED Equation.3  ��� and RgRh� EMBED Equation.3  ���Rgh for all g, h � EMBED Equation.3  ���G. In this paper, we study the graded Jacobson radical of a graded ring, graded radicals of graded ideals of (R,G) and give some topological properties of the graded spectra of (R,G).
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