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1. Introduction

      We first introduce some remarks and notations:

(1) Unless otherwise stated, all matrices considered in this paper will be over the complex field.

(2) Let A be an m ( n matrix, then AT, [image: image1.wmf]A

, and A* (A* = [image: image2.wmf]T

A

) denote its transpose, complex conjugate, and adjoint, respectively.

(3) Both Hermitian positive definite and real symmetric positive definite matrices will be named positive.

      Similar abbreviations hold for semipositive, negative, and seminegative definite matrices.
(4) The notations B > 0, B ( 0, B < 0, and B ( 0 mean that the square matrix B is positive, semipositive, negative and seminegative, respectively.

(5) ||.||o,( denotes the sup norm over (; thus for complex valued vector functions u = (u1, u2, …, un).
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 (|u1(x)|2 + … + |[image: image5.wmf]u
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      In Liapunov’s Second Method, positive definite solutions B of the matrix equation A* B + BA = (E (E > 0) have been used to construct Liapunov functions, and to prove stability of some ordinary differential systems.  [image: image7.wmf]dx

du

 = Au, [5], [13].
      Chow and Dunninger [1] used this method to obtain a generalized maximum principle for some classes of n-metaharmonic functions.
      In this paper, we use the idea of Liapunov’s Second Method to find a generalized maximum principle for a class of weakly coupled second order homogeneous elliptic systems.
Lu + Au = 0      in     ( ( Rn
      Where L is the second order elliptic operator
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, aij=aji, u=(u1, u2, …, un)T.

      The following Lemma is a well-known result in Liapunov stability theory and will be used in this paper.
      Liapunov Lemma: Let A be an n ( n complex or real matrix.

(1) Assume that no eigenvalues of A has positive real part, and moreover that the elementary divisors of A corresponding to eigenvalues with vanishing real part are linear. Then there exist matrices B > 0 and E ( 0 such that.

A* B + BA = ( E

(2) If each eigenvalue of A has negative real part, then for any E > 0, there exists a unique B > 0 such that A* B + BA = ( E

      The proof of this Lemma can be found in [5], [7] and [13].

2. The Generalized Maximum Principle

      Consider a second order operator

L [u(x)] = 
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 , aij = aji…. (2.1)
      in a bounded domain ( in Rn. We assume that L is elliptic in (, i.e., for all x(( and 
all y=(y1, y2, …, yn) ( Rn\ {0}.

aij (x) yi yj > 0
  ………. (2.2)
      holds, we also suppose that the coefficients aij and ai are bounded and real-valued functions in (.

       Now consider the following weakly coupled second order elliptic system,

Lus(x) + ask (x) uk(x) = 0 , s = 1,2, …, n     in  (,

or in matrix from,

Lu(x) + A(x) u(x) = 0   in  ( ………. (2.3)

      Here A(x) = (ask (x)) is an n ( n complex matrix function and u is                        a C2 [ n×1]complex vector function.

      Associated with (2.3) the following characteristic equation of A,      

|(I – A| = 0.

      Theorem (2.1): Assume that there exists a constant complex matrix B > 0 such that 

A*  (x) B + BA(x) ( 0,     x(( ……. (2.4)

      Then for all solutions u( C2(()(C ([image: image16.wmf]Ω

) of (3.3) there exists a constant k > 0 such that.
||u||o,( (  k  ||u||o,(( ………. (2.5)

      Here k = ((n / (1)½, where (1 and  (n are the smallest and biggest eigenvalues of B, respectively.

Proof: Let

v = u* Bu = u. Bu = Bu.u = bks [image: image17.wmf]u

k u,

      where “.”denotes the dot product in Cn defined by x.y=y.*x= [image: image18.wmf]å
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       Then v is a nonnegative function and,

vi ( 
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Lv = aij vij + ai vi
= bks aij [image: image28.wmf]u

kij us + bks [image: image29.wmf]u

k aij usij + 2 bks aij [image: image30.wmf]u

ki usj
+ bks ai [image: image31.wmf]u

ki us + bks [image: image32.wmf]u

k ai usi
= bks [image: image33.wmf](
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Lu

 us + bks [image: image34.wmf]u

k (Lus) + 2 aij ui. B uj= (Lu)* Bu + u* B (Lu) + 2 aij B½ ui. B½ uj .Thus      Lv = ( u* (A*B + BA)u + 2 aij B½ ui. B½ uj ( 0        ……(2.6)

Since A*B + BA ( 0   and aij vi . vj ( 0

For any vectors v1 . v2, …, vn.

      Therefore, by the maximum principle for the elliptic operator L, we have

v(x)( [image: image35.wmf]max
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 v(y),    ( x((  ……… (2.7)

Suppose that
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Since B > 0, we know that

(1 > 0 and (1 |u(x)|2 ( v(x) = u(x)* B u(x) ( (n |u(x)|2
Hence, from (2.7)

|u(x)|2 ( [image: image37.wmf]1
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and ||u||0,( ( k ||u||0,((    where  k = ((n/(1)½    (
      The Liapunov lemma yields the following theorem.

      Theorem (2.2): Let A(x) = g(x) I + D in (2.3), where g(x) ( 0 in ( and D is a constant matrix over C. Assume that none of the eigenvalues of D has a positive real part, and moreover that the elementary divisors of D corresponding to eigenvalues with vanishing real part are linear. Then there exits a constant k > 0 such that for all solutions u(C2 (()(C([image: image39.wmf]Ω

)   of (2.3).

||u||0,(  (  k ||u||0,((
      Proof: by Liapunov lemma, there exist matrices B > 0 and E ( 0 such that   D* B + BD = ( E ( 0.

      Since g ( 0 in (, we get

A*(x) B + BA(x) = 2 g(x) B + D* B + BD ( 0.

      Now the result of this Theorem follows from Theorem (2.1).

      Theorems (2.1) and (2.2) are generalized maximum principles since the value of k in (2.5) may be larger than 1.

      The best value of k in (2.5) for any matrix A, is k=1 which corresponds to the classical maximum principle.

3. The Classical Maximum Principle

Theorem (3.1):

(a) A sufficient condition that:

||u||0,(  (  ||u||0,(( ………. (3.1)

holds , for all solutions u( C2(()(C ([image: image40.wmf]Ω

) of (2.3) is

A*(x) + A(x) ( 0. ………. (3.2)

(b) Assume that the variable matrix A=A(x) in (2.3) is normal (i.e., A*(x) A(x) = A(x) A*(x), x((), and all its eigenvalues have nonpositive real parts for all x((.

      Then (3.1) holds for all solutions u( C2(()(C ([image: image41.wmf]Ω

) of (2.3) . 

      Proof. (a) By choosing B=I in Theorem (2.1), (2.5) with K=1   (i.e., 3.1) follows from the condition (3.2)

(b) suppose

(1(x) (2(x), …, (n(x)

      are all the eigenvalues of A(x). Since A(x) is normal, there exists a unitary matrix U(x) such that

U*(x) A (x) U(x) = [image: image42.wmf]ú
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Therefore, by the assumption,

U*(x) (A*(x) + A(x)) U(x)=  [image: image43.wmf]ú
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Hence A* + A = U(U* ( 0; and then 3.1 follows from (a). (
Example: For n = 2, consider

Lu + [image: image44.wmf]ú
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The associated characteristic equation,

(2 – (a+d)( + (ad – bc) = 0,

has roots
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      Hence, by Theorem (2.2) the inequality (2.5) is valid provided one of the following conditions is satisfied:
I- a + d < 0, (a – d)2 + 4bc ( 0;

II- a + d < 0, (a – d)2 + 4bc >0, ad – bc ( 0;

III- a + d = 0, ad – bc > 0.

The inequality (2.5) is not valid for the general case, when a + d > 0 or    

a + d = 0, ad – bc ( 0. In fact, u = sin x sin y [image: image47.wmf]ú

û

ù

ê

ë

é

-

2

1

solves the systems

(u + [image: image48.wmf]ú

û

ù

ê

ë

é

-

4

4

1

0

 u = 0

(u + [image: image49.wmf]ú

ú

û

ù

ê

ê

ë

é

-

-

0

4

1

0

 u = 0

in ( = (0, () ( (0, () and vanishes on (( but (2.5) does not hold.

      Theorem (2.1) gives a sufficient condition for which (2.5) holds. It raises some open questions as to whether Theorem (2.1) can be extended to a more general system (2.3) with weaker restrictions on the matrix A, and as to whether necessary conditions can be determined so that (2.5) holds.
      Following from the inequality

          L(u* Bu) ( ( u* (A*B+BA) u + 2aij B½ui B½ uj ( 0,……….(2.6)

      in the proof of Theorem (2.1), and form Protter and Weinberger [6], are the following two maximum principles for system (2.3)

      Corollary (3.1): if u(C2 (()( C([image: image50.wmf]Ω

) is a solution of (2.3), and if u* Bu attains a maximum in ( for some positive definite matrix B such that A*(x) B+BA(x) is negative semidefinite in (, then u is a complex constant vector in (. Moreover, if A*(x) B+ BA(x) is negative definite at some x(( or, if A (x) is invertible for some x((  then u= 0 in ( .

      Proof. Under the assumption of this corollary, by the proof of Theorem 2.1, inequality 2.6 holds. Thus, by the maximum principle of the second order elliptic equation (see [6] , [10]   ), u*Bu = constant. Hence, from (2.6) again, we have

0 = L (u* Bu)

= ( u* (A* B+ BA) u + 2aij B½ ui B½ uj ( 0        in (
Which implies that u* (A* B + BA) u= 0 and aij B½ ui B½ uj = 0, and then.

B½ ui = 0 and ui = 0 in ( for 1 [image: image51.wmf]£

 i [image: image52.wmf]£

n. Thus u is a complex constant vector in (, Moreover, if A* (x) B+ BA (x) < 0 at some  x((  then, from u*(A*(x) B+BA (x) u=0, we have u= 0 in ( and if A(x) is invertible for some x( (  then, from the system 2.3 we still have u [image: image53.wmf]º

0 in (. (
      Corollary (3.2): Let u ( C2 (() [image: image54.wmf]Ç

C ([image: image55.wmf]Ω

) be a solution of 2.3 Suppose that u* Bu [image: image56.wmf]£

 M in ( and that u* Bu= M at a point P (( ( for some positive definite B such that A* B+ BA is negative semidefinite. Here M is a nonnegative constant. Assume that P lies on the boundary of a ball in (, and that the outward directional derivative(u/(v exists at P. Then[image: image57.wmf][image: image58.wmf]
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Unless u is a complex constant vector such that u* Bu [image: image62.wmf]º

 M; equivalently,

[image: image63.wmf]v

u

B

¶

¶

2

1

 > 0                    at P

Unless u is constant and  |B½ u| = M½ 

4.  Concluding Remarks
1. The condition 3.2 is also necessary for the proof of the classical maximum principle by the method imposed here.
2.  Theorem 3.1 contains the result of winter and Wong [12] for real negative semidefinite A=A (x, u,(u) as a special case; one may view, for given u, A (x, u (x),(u (x)) as a matrix function A1 (x).
3.  By Liapunov Lemma, there exists at least one positive definite matrix B > 0, satisfying D* B+BD= (E ( 0, if the matrix D meets the assumption of Theorem (2.2). See [3], [5] and [7].

4.  Corollary 3.1 actually holds even if ( is unbounded, since inequality (2.6) holds and if A* (x) B+ BA (x) < 0 at some  x((, then we still have u=0 in ( .
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ملخص


      في هذا البحث أوجدنا أحد مبادئ القيم العظمى المعممة لأنظمة من المعادلات التفاضلية الجزئية الناقصة المتجانسة من المرتبة الثانية ذات الارتباط الضعيف.


      وأوجدنا كذلك شرطاً ضرورياً لمبدأ القيمة العظمى التقليدي.


      هذه النتائج هي تطوير لبعض النتائج حول مبادئ القيم العظمى التي وردت في المراجع المذكورة في البحث ولكن تحت شروط مختلفة.


Abstract


      In this paper we find a generalized maximum principle for weakly coupled second order homogeneous elliptic systems





Lu + Au = 0        in      ( ( Rn





Where  L [u(x)]=�EMBED Equation.3���aij(x) �EMBED Equation.3��� + �EMBED Equation.3��� ai (x) �EMBED Equation.3��� , aij = aji





      is a second order real elliptic operator, u=(u1, u2, …, un)T, and A is an n ( n matrix with entries which are all complex valued functions.


      We also find a sufficient condition for the classical maximum principle. These results extend the result of Winter and Wong [12]  for A being negative semidefinite to a more general form of A.


      Generalized maximum principles for weakly coupled second order elliptic systems have also been obtained by Dow [2], Hile and Protter [6], and Wasowski [11] under different conditions on the coefficients.
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