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1. Introduction 
      If X is a topological space, then H(X) denotes the set of all auto homeomorphisms on X. A topological space X is called homogeneous if for any 
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 such that h(x)=y. The concept of homogeneity was introduced by W.Sierpinski [3]. Several mathematicians have studied homogeneous spaces. One may consult [1] for this study . 

      Let X be any set.
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 cof we mean the discrete, indiscrete and the co-finite topologies on X, respectively . N, Nk, Z, Q and R will denote the sets of all natural numbers, {1, 2,….,k}, integers, rationals and real numbers, respectively (
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 will denote the usual(Euclidean) and the left ray topologies on the nonempty subset X
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X will be denoted by 
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 and , 
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 will denote the relative topology on A.

      If A= {x} then 
[image: image19.wmf]-

X

 will stand for 
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 .

      A set X is called denumerable if it is equipotent with N. However, a set X is called countable if it is either finite or denumerable .

      A space X is said to have the fixed point property if and only if every continuous map f : X 
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 X has a fixed point ( i.e. a point x in X such that f(x) = x ).

      Several authors studied finite topological spaces with some topological Structures. For example , Fora and Al-Bsoul [2] gave the following characterization of  certain homogenous spaces . 

THEOREM 1.1.
      Let (x,
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) be a topological space which contains a nonempty open indiscrete subset (n the induced topology). Then the following are equivalent:

a) (X, 
[image: image23.wmf]t

 ) is a homogeneous space. 

b) (X, 
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 ) is a disjoint union of indiscrete topological space all of which are homeomorphic to one another . 

      Then they (Fora and Al-Bsoul) used Theorem1.1 to obtain the following characterization result. 

THEOREM 1.2.
      Let (X, 
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 ) be a topological space with 
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 ) is homogeneous if and only if (X, 
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 ) is the sum of mutually 
homeomorphic indiscrete spaces . 

      The following result is also obtained in [2] . 

THEOREM 1.3.
      Every nondegenerate (i.e. 
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 >1) homogeneous finite space does not have the fixed point property .

2. Minimal Open Sets .
      We start this section with the following definition. 

 DEFINITION 2.1.
      Let (X, 
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 ) be a topological space and H an open set in X containing the point p
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X. The set H is called a minimal open set at p if there is no open proper subset of H containing p , i.e. if V is an open set in X containing p then H 
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 V. A nonempty open set U is called minimal if it is minimal at each x 
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,9) I Z isminimal at 8 , but not minimal at 4. 

      The following result is easy to observe.

THEOREM 2.2
      Let (X,
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) be a topological space . Let H be a minimal open set in X at p and let a
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H. Then the following are equivalent : 

i) H is not minimal at q .

ii) there exists an open set V containing q but not p . 

iii) q 
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       proof. (i)
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(iii) :Since the open set H is not minimal at q, therefore there exists a proper open set V
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H such that q 
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 V. But H is minimal at p. Therefore p
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(ii) 
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 (iii) : The proof is trivial .
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 then there is an open set V such that q
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      Now, V
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H is an open proper subset of H and containing q. Hence H is not minimal at q.

      As a direct conclusion of Theorem 2.2, we have the following result.

COROLLARY 2.3.
      Let 
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 -space and let H be any open set in X containing two distinct points p,q. Then H can not be minimal at p and at q simultaneously.
      The following result clarifies that minimal open sets have been indeed used in Theorem1.1.

THEOREM 2.4 
      Let 
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be a topological space and let A be a nonempty open set in X. Then A is minimal if and only if 
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      Proof. Let A be a nonempty minimal open set in X. If 
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. Since H and A are both open sets in X, therefore V is a nonempty open set in X and it is properly contained in the minimal set A which is absurd.

      On the other hand, if A is a nonempty open set such that 
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, then A will be minimal because if not , then there is a proper nonempty open subset H of A. Hence 
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THEOREM 2.5.
      A topological space X has a minimal open set at p in X if 

and only if the intersection of all open sets in X containing p is still an open set in X.

      Proof. Trivial .

COROLLARY 2.6.
      If the topology 
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 on X is finite. Then the space (X, 
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) has minimal open sets at each x in X.

THEOREM 2.7 
      Let X, Y be two topological spaces.

i) If U, V are minimal open sets at p, q in X, Y, respectively. Then U x V, is a minimal open set at (p,q) in X x Y .

ii) If G is a minimal open set at (p,q) in XxY . Then there exit U, V minimal open sets at p , q in X , Y, respectively, such that G= UxV.

      Proof. i) Suppose H is an open set in X x Y such that (p,q) [image: image67.wmf]Î

 H 
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      Then there are open sets U1 , V1 in X,Y, respectively, such that (p,q) [image: image69.wmf]Î

 U1 x V1 
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 V. Henceforth U1 = U and V 1 = V . This implies that H= U x V. Therefore U x V is a minimal open set at (p,q).

ii) Since G is an open set in X x Y containing (p,q) . Therefore there exit U, V open sets in X,Y respectively such that (p,q) [image: image75.wmf]Î
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. Similarly, it can be shown that V is minimal at q.

THEOREM 2.8 
      If a 
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has a minimal open set at some point p in X, then p is an isolated point of X.

      Proof. Let H be a minimal open set at p. If there is a point 
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 and this completes our proof of the theorem , The following is a direct consequence of Theorem 2.8.

COROLLARY 2.9.
      The only homogenous 
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having a minimal open set at some ( each ) point is the discrete space.

      To state our next result we need the following definition.

 DEFINITION 2.10.
      A topological space 
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 if X has a local base at p consisting of clopen (i.e. closed and open simultaneously) sets in X.

      A topological space 
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      Now, we can state our next result.

THEOREM 2.11.
      Let 
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 be a topological space and 
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i) if X has a minimal open set at p, then X is first countable at p.

ii) if X has a minimal open set at p and X is regular at p, then X is 0-dimensional at p.
      Proof.(i) A local base at p may be obtained by taking only the minimal open set at p.

(ii) Let G be a minimal open set at p. Since X is a regular space at p, there exists an open set U such that 
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 is a local base at p, and this completes the proof of our theorem.

THEOREM 2.12.
      Let 
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 be a homogenous topological space having a minimal open set at some points. Then X is a first countable space . 

      If  X is also regular at some oints then X is 0-dimensional.


      Proof. Since X has a minimal open set at p in X, therefore ; by Theorem 2.11; X is first countable at p. The fact X is a homogenous space and first countable at p in X implies that X is first countable. Indeed, if Bp is a countable local base at p and if q is any point in X, then there exists a homeomorphism f:X
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      To prove the second assertion of the theorem, let X be a regular space at q in X and having minimal open set at p in X. By homogeneity of X, X is regular at p. 

      Therefore; by Theorem 2.11; X is 0-dimensional at p. Now, for any q 
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X such that f(p)=q. Since X is 0-dimensional at p, there exists a local base Bp at p consisting of clopen sets in X. Let 
[image: image109.wmf]{

}

p

q

B

U

U

f

B

Î

=

:

)

(

. Then Bq is a local base at q consisting of clopen sets in X. Now, it is clear that the collection 
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 is a base for the topology on X consisting of clopen sets in X. Hence X is 0-dimensional.

 3. Denumerable Homogenous Spaces and Minimal Open Sets. 

      As an application of the local minimality of open sets, we shall present the following classification of the left ray topology on the integers.

THEOREM 3.1.
      Let 
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      Proof. Using the assumption of the theorem, one can construct an infinite two sided tower {V n : n 
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      Then f is a homeomorphism and our proof is completed .

      The following examples show the necessity of the assumptions mentioned in Theorem 3.1

EXAMPLE 3.2.
      In the product space X of (Z, [image: image132.wmf]r
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EXAMPLE 3.3.
      The topological space (N, [image: image142.wmf]r
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EXAMPLE 3.4.
      The topological space (N,
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EXAMPLE 3.5.
      Let X be the product of two copies of (Z, [image: image149.wmf]r
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      Let 
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does not satisfy (i) in Theorem 3.1. Notice that X is indeed not homogenous.

EXAMPLE 3.7.
      In the space 
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EXAMPLE 3.8.
      Consider the topology 
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4. Homogenous Spaces Having Minimal Open Sets.

      In the following results we shall characterize homogenous topological spaces having minimal open sets.

THEOREM 4.1.(A.C.)
      let 
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      Proof. The proof will be through the following three steps:

I. Define a relation 
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 As a direct application of Theorem 4.1 and Theorem 2.7 we have the following result .

COLOLARY 4.2.
      Let (X,
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 ) be a topological space having a minimal open set. Then (X,
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 ) is homogeneous if and only if it is the product of two topological spaces : one is discrete and the other is indiscrete.

      Proof. If (X,
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 ) is a homogeneous topological space having a minimal open set , then according to Theorem 4.1, (X,
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      Theorem 4.1, Theorem 3.1 and Theorem 2.1 suggest the following Classification problem.

PROBLEM 4.3.
      Every countable homogeneous space, (X,
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      It is worth noticing that our Problem 4.3 is true in the following three cases:

(1) X is finite (2) (X,
[image: image340.wmf]t

 ) has a minimal open set, and (3) (X,
[image: image341.wmf]t

 ) satisfies the assumption of Theorem 3.1 concerning the existence of local minimal open sets. Theorem 1.3 and the preceding Problem 4.3 suggest the following open problem.

PROBLEM 4.4
      If (X,
[image: image342.wmf]t

 ) is a countable homogeneous space such that 
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 >1. Then countable homogeneous space, does not have the fixed point property.

      Problem 4.3 also suggests the following open problem.

PROBLEM 4.5.
      Every countable homogenous space is first countable.
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ملخص


      لقد صنفنا بعض الفضاءات المتجانسة اللانهائية المعدودة. لقد ناقشنا في هذا البحث المجموعات المفتوحة الأصغرية محليا واستخدمنا هذا المفهوم التبولوجي في تصنيف بعض الفضاءات التبولوجية. وأخيرا تم عرض بعض الأمثلة والمسائل المفتوحة.


Abstract


       We characterize some classes of infinite countable (denumerable) homogeneous topological spaces. The concept of having minimal open neighborhoods Will be studied and we use it in a characterization result through the paper. Finally, we provide some examples relevant to the results we have obtained, and we also propose some open problems.
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