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1. Introduction and Preliminaries:

      In 1963 [2], A. Dold has introduced the weak covering homotopy property (WCHP). Since then several variations of covering homotopy property have been defined and investigated in the Literature. In 1996 [1], the concept of Fairly Weak Covering Homotopy Property (FWCHP) was defined and studied. The purpose of the present paper is to introduce a new covering homotopy property called the F* Weak covering homotopy property (F*WCHP), which is strictly between the WCHP and the FWCHP. The researcher show some of it’s characterizations and properties.
      In the present paper the researcher work in the category of topological spaces and continuous maps, thus  E, 
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, B, , … are topological spaces.
1.1Notations: 

      The researcher write   I  to  denote  [0,1]  ,and  İ  to denote  boundry I  .
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      If  H : X  × I   →  X ,  then  H0  =  H ( x , 0 )   and  H1 = ( x , 1) . If  X  and  Y  are  topological  spaces  ,  then  YX = { f : X → Y ,  f  is  continuous }.  Let   

і  :  A  →  X  ,  then  і#  :  YX  →  YA  is  a map  defind  by  і# 
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 f  = f 
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 і    [7] . If  K  :  X × I  → X × I  is  continuous  map  and   1X
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I :  X × I  →  X × I  is  the  identity  map ,  then  K 
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I    rel.  X × İ   means  there  is  a homotopy 

 H :  X × I  × I  →  X × I   such  that  H0  =  K ,   H1 =  1X
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I    and  

H ( (x , 0) , s ) = ( x , 0)  , H ( ( x , 1) , s ) = ( x , 1)   for  any  s 
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      The  following  definitions  and  results  will  be  useful  in the sequel .

1.2 Definition [4] :
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 is called a fiber map (or a map over B ) if 
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1.3 Definition [4] :

      A map 
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 is called a homotopy over B or a vertical homotopy if  there  is  
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1.4 Definition [4] :

      Two maps 
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 are called vertically homotopic, denoted by 
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1.5 Definition [4] :

      Let 
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1.6 Definition [8] :

      Let 
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 be maps then  p is said to be dominated by 
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1.7 Lemma [7] :

      If X is a locally compact Hausdorff space and  Z  is a Hausdorff space, then 
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1.8 Definitions :

      Let 
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(1) p is said to have the weak covering homotopy (briefly WCHP) with respect to X, if there exists a homotopy 
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, [2]. We say that p is a weak fibration (W. fibration) if  p has the WCHP with respect to every space.
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(2) ) p is said to have the fairly weak covering homotopy property (briefly FWCHP) with respect to X, if there is a homotopy 
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      The researcher claims that p is a FW. fibration  if  p  has the  FWCHP with respect to every space.

1.9 Definition [4] :

      If 
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 is called the stationary homotopy at  f  if, 
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1.10 Definition [3] :

      If  X  is any 
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is the fibered product with projections 
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is called a pullback of  p by  f . 

      In the present paper, the researcher work in the category of topological    spaces and continuous maps.

2. THE F* WEAK COVERING HOMOTOPY PROPERTY:

2.1 Definition:

      A map 
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, if p has the F* WCHP  with respect to every space then we say that  p is an  F* Weak fibration.

                                              X

                                                            f            H0

                                                  F0                              

                                                       E         p                B 

                                                F                          H       

                                      

                                         X
[image: image79.wmf]´

I                  X
[image: image80.wmf]´

I

                                                    1X 
[image: image81.wmf]´

K  

2.2 Theorem :

      WCHP ( F* WCHP ( FWCHP .

Proof :

      First we prove that  WCHP ( F* WCHP :
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Then it is clear that  K  is continuous.
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      What remains is that F* WCHP ( FWCHP, which is obvious from the definitions.

      The researcher introduces the following :
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      The following is an immediate consequence of this definition :

2.4 Proposition :
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      The WCHP is invariant under fiberwise dominance [8] The researcher will prove in the following that the F* WCHP is invariant under the F* Weak fiberwise dominance.

2.5 Theorem : ( Invariance Property of the F* WCHP )
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2.7 Corollary :
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 it follows that  p  has the F* WCHP. □

      Other well known properties of the WCHP and FWCHP are its invariance under the operation of “pullingback” ( [8] and [1] respectively ). The following result shows that the F* WCHP has the same property.

2.8 Proposition :

      Let 
[image: image186.wmf]B

E

p

®

:

 be an F* Weak fibration, 
[image: image187.wmf]B

B

f

®

:

 be a map then the pullback of  p  by  f  is an F* W fibration.

Proof :

      Let 
[image: image188.wmf]B

E

p

®

:

 be the pullback of  p  by  f , suppose that 
[image: image189.wmf]B

E

p

®

:

 is an F* W. fibration. Let X be any space, 
[image: image190.wmf]E

X

g

®

:

 be a map and 
[image: image191.wmf]B

I

X

H

®

´

:

 be a homotopy such that 
[image: image192.wmf]0

H

g

p

=

o

, then 
[image: image193.wmf]E

X

g

f

®

:

o

, where 
[image: image194.wmf]E

E

f

®

:

 is the projection on the first coordinate and 
[image: image195.wmf]B

I

X

H

f

H

®

´

=

:

o

 such that 
[image: image196.wmf])

(

)

(

)

(

0

0

g

f

p

g

p

f

H

f

H

o

o

o

o

o

=

=

=

. Since p is an F* W fibration, there is a homotopy 
[image: image197.wmf]E

I

X

F

®

´

:

 and 
[image: image198.wmf]I

I

K

®

:

, 
[image: image199.wmf]I

K

1

@

 rel.
[image: image200.wmf]I

&

 such that 
[image: image201.wmf]g

f

F

o

=

0

 and 
[image: image202.wmf]*

K

H

F

p

o

o

=

  where  
[image: image203.wmf]K

K

X

´

=

1

*

.
Define 
[image: image204.wmf]E

I

X

F

®

´

:

by  
[image: image205.wmf]))

,

(

),

,

(

(

)

,

(

*

t

x

K

H

t

x

F

t

x

F

o

=

. 
Since 
[image: image206.wmf])

,

)(

(

)

,

)(

(

*

t

x

K

H

f

t

x

F

p

o

o

o

=

, so our definition is justified. 

Now, 
[image: image207.wmf]))

(

),

(

(

))

,

(

),

,

(

(

))

,

(

),

,

(

(

)

,

(

*

x

g

p

x

g

f

o

x

H

o

x

F

o

x

K

H

o

x

F

o

x

F

=

=

=

o

. Hence 
[image: image208.wmf])

(

)

,

(

x

g

o

x

F

=

 and 
[image: image209.wmf])

,

)(

(

)

,

)(

(

*

t

x

K

H

t

x

F

p

o

o

=

. Therefore 
[image: image210.wmf]p

 is F* W fibration. □

3. Construction of  F* W Fibration From F* W Cofibration :

      In this section the researcher proves that if  
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3.1 Definition [7] :
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The researcher introduces the following :

3.3 Definition :
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      As a motivation for the next result, let us recall the following :
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3.6 Theorem :
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ملخص


     في هذا البحث قدمنا تعميماً جديداً لخاصية التغطية الهوموتوبية (CHP)  أسميناها خاصية التغطية الهوموتوبية الضعيفة المعتدلة *(F*WCHP) أو(Fairly* Weak Covering Homotopy Property  (وبينا أن هذه الخاصية أضعف من (WCHP) وأقوى من(FWCHP) كما أعطينا بعض الخواص والتمييزات لهذه الخاصية.


Abstract


   In this paper, the researcher introduces a new covering Homotopy property called the Fairly* Weak Covering Homotopy property (F* WCHP) which is strictly between the WCHP and the FWCHP, and We shows some of it’s characteristics and properties.
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